Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Csc






Mathematica Notation

Traditional Notation









Elementary Functions > Csc[z] > Integration > Indefinite integration > Involving functions of the direct function > Involving algebraic functions of the direct function > Involving ((a+b csc2(c z))n)beta





http://functions.wolfram.com/01.10.21.0105.01









  


  










Input Form





Integrate[Sqrt[(a + b Csc[c z]^2)^3], z] == (Sqrt[(a + b Csc[c z]^2)^3] Sin[c z] ((-Sqrt[2]) b (3 a + b) ArcTanh[(Sqrt[2] Sqrt[-b] Cos[c z])/ Sqrt[-a - 2 b + a Cos[2 c z]]] Sin[c z]^2 + Sqrt[-b] (b Cos[c z] Sqrt[-a - 2 b + a Cos[2 c z]] - 2 Sqrt[2] a^(3/2) Log[Sqrt[2] Sqrt[a] Cos[c z] + Sqrt[-a - 2 b + a Cos[2 c z]]] Sin[c z]^2)))/ (Sqrt[-b] c (-a - 2 b + a Cos[2 c z])^(3/2))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["Csc", "[", RowBox[List["c", " ", "z"]], "]"]], "2"]]]]], ")"]], "3"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List[SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["Csc", "[", RowBox[List["c", " ", "z"]], "]"]], "2"]]]]], ")"]], "3"]], " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SqrtBox["2"]]], " ", "b", " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", "a"]], "+", "b"]], ")"]], " ", RowBox[List["ArcTanh", "[", FractionBox[RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List["-", "b"]]], " ", RowBox[List["Cos", "[", RowBox[List["c", " ", "z"]], "]"]]]], SqrtBox[RowBox[List[RowBox[List["-", "a"]], "-", RowBox[List["2", " ", "b"]], "+", RowBox[List["a", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]]]], "]"]], " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]], "2"]]], "+", RowBox[List[SqrtBox[RowBox[List["-", "b"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["c", " ", "z"]], "]"]], " ", SqrtBox[RowBox[List[RowBox[List["-", "a"]], "-", RowBox[List["2", " ", "b"]], "+", RowBox[List["a", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]]]]], "-", RowBox[List["2", " ", SqrtBox["2"], " ", SuperscriptBox["a", RowBox[List["3", "/", "2"]]], " ", RowBox[List["Log", "[", RowBox[List[RowBox[List[SqrtBox["2"], " ", SqrtBox["a"], " ", RowBox[List["Cos", "[", RowBox[List["c", " ", "z"]], "]"]]]], "+", SqrtBox[RowBox[List[RowBox[List["-", "a"]], "-", RowBox[List["2", " ", "b"]], "+", RowBox[List["a", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]]]]], "]"]], " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]], "2"]]]]], ")"]]]]]], ")"]]]], ")"]], "/", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["-", "b"]]], " ", "c", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "-", RowBox[List["2", " ", "b"]], "+", RowBox[List["a", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]], ")"]], RowBox[List["3", "/", "2"]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <msqrt> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> csc </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </msqrt> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msqrt> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> csc </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </msqrt> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mrow> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> - </mo> <mi> a </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> </mrow> </msqrt> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <msup> <mi> a </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <msqrt> <mi> a </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <msqrt> <mrow> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> - </mo> <mi> a </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <msqrt> <mrow> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> - </mo> <mi> a </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> - </mo> <mi> a </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <csc /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <csc /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <ci> a </ci> </apply> <cn type='integer'> 3 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <sin /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <cos /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <ln /> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <cos /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <sin /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> b </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> a </ci> </apply> <ci> b </ci> </apply> <apply> <arctanh /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <cos /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <sin /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> c </ci> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List["a_", "+", RowBox[List["b_", " ", SuperscriptBox[RowBox[List["Csc", "[", RowBox[List["c_", " ", "z_"]], "]"]], "2"]]]]], ")"]], "3"]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["Csc", "[", RowBox[List["c", " ", "z"]], "]"]], "2"]]]]], ")"]], "3"]], " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SqrtBox["2"]]], " ", "b", " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", "a"]], "+", "b"]], ")"]], " ", RowBox[List["ArcTanh", "[", FractionBox[RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List["-", "b"]]], " ", RowBox[List["Cos", "[", RowBox[List["c", " ", "z"]], "]"]]]], SqrtBox[RowBox[List[RowBox[List["-", "a"]], "-", RowBox[List["2", " ", "b"]], "+", RowBox[List["a", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]]]], "]"]], " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]], "2"]]], "+", RowBox[List[SqrtBox[RowBox[List["-", "b"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["c", " ", "z"]], "]"]], " ", SqrtBox[RowBox[List[RowBox[List["-", "a"]], "-", RowBox[List["2", " ", "b"]], "+", RowBox[List["a", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]]]]], "-", RowBox[List["2", " ", SqrtBox["2"], " ", SuperscriptBox["a", RowBox[List["3", "/", "2"]]], " ", RowBox[List["Log", "[", RowBox[List[RowBox[List[SqrtBox["2"], " ", SqrtBox["a"], " ", RowBox[List["Cos", "[", RowBox[List["c", " ", "z"]], "]"]]]], "+", SqrtBox[RowBox[List[RowBox[List["-", "a"]], "-", RowBox[List["2", " ", "b"]], "+", RowBox[List["a", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]]]]], "]"]], " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]], "2"]]]]], ")"]]]]]], ")"]]]], RowBox[List[SqrtBox[RowBox[List["-", "b"]]], " ", "c", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "-", RowBox[List["2", " ", "b"]], "+", RowBox[List["a", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]], ")"]], RowBox[List["3", "/", "2"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18