|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.10.23.0006.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Sum[Csc[(k Pi)/n]^2, {k, 1, Floor[(n - 1)/2]}] ==
(1/12) (2 n^2 - 5 - 3 (-1)^n) /; Element[n, Integers] && n > 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], RowBox[List["Floor", "[", FractionBox[RowBox[List["n", "-", "1"]], "2"], "]"]]], SuperscriptBox[RowBox[List["Csc", "[", FractionBox[RowBox[List["k", " ", "\[Pi]"]], "n"], "]"]], "2"]]], "\[Equal]", RowBox[List[FractionBox["1", "12"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox["n", "2"]]], "-", "5", "-", RowBox[List["3", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", ">", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ⌋ </mo> </mrow> </munderover> <mrow> <msup> <mi> csc </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mrow> <mi> k </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mi> n </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 12 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> n </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> </mrow> <mo> - </mo> <mn> 5 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </uplimit> <apply> <power /> <apply> <csc /> <apply> <times /> <ci> k </ci> <pi /> <apply> <power /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 12 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> </apply> <cn type='integer'> -5 </cn> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <apply> <ci> SuperPlus </ci> <ci> ℕ </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k_", "=", "1"]], RowBox[List["Floor", "[", FractionBox[RowBox[List["n_", "-", "1"]], "2"], "]"]]], SuperscriptBox[RowBox[List["Csc", "[", FractionBox[RowBox[List["k_", " ", "\[Pi]"]], "n_"], "]"]], "2"]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox["1", "12"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox["n", "2"]]], "-", "5", "-", RowBox[List["3", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"]]]]], ")"]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", ">", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|