|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.23.21.0290.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[z^n E^(p z) Cos[a z]^m Tanh[c z]^u Csch[c z], z] ==
I^(-1 + u) 2^(1 - m) E^((p + c u) z) Binomial[m, m/2]
Binomial[-1 + u, (1/2) (-1 + u)] n! (1 - Mod[m, 2]) (1 - Mod[-1 + u, 2])
Sum[(1/(-j + n)!) ((-1)^j (p + c u)^(-1 - j) z^(-j + n)
HypergeometricPFQ[{Subscript[a, 1], \[Ellipsis], Subscript[a, 1 + j],
u}, {1 + Subscript[a, 1], \[Ellipsis], 1 + Subscript[a, 1 + j]},
-E^(2 c z)]), {j, 0, n}] + I^(-1 + u) 2^(1 - m)
Binomial[-1 + u, (1/2) (-1 + u)] n! (1 - Mod[-1 + u, 2])
Sum[Binomial[m, k] (E^(((-I) a (-2 k + m) + p + c u) z)
Sum[(1/(-j + n)!) ((-1)^j ((-I) a (-2 k + m) + p + c u)^(-1 - j)
z^(-j + n) HypergeometricPFQ[{Subscript[b, 1], \[Ellipsis],
Subscript[b, 1 + j], u}, {1 + Subscript[b, 1], \[Ellipsis],
1 + Subscript[b, 1 + j]}, -E^(2 c z)]), {j, 0, n}] +
E^((I a (-2 k + m) + p + c u) z) Sum[(1/(-j + n)!)
((-1)^j (I a (-2 k + m) + p + c u)^(-1 - j) z^(-j + n)
HypergeometricPFQ[{Subscript[c, 1], \[Ellipsis],
Subscript[c, 1 + j], u}, {1 + Subscript[c, 1], \[Ellipsis],
1 + Subscript[c, 1 + j]}, -E^(2 c z)]), {j, 0, n}]),
{k, 0, Floor[(1/2) (-1 + m)]}] + 2^(1 - m) E^(c u z) Binomial[m, m/2] n!
(1 - Mod[m, 2]) Sum[(-1)^k Binomial[-1 + u, k]
(E^((p + c (-1 - 2 k + u)) z) Sum[(1/(-j + n)!)
((-1)^j (p + c (-1 - 2 k + 2 u))^(-1 - j) z^(-j + n)
HypergeometricPFQ[{Subscript[d, 1], \[Ellipsis],
Subscript[d, 1 + j], u}, {1 + Subscript[d, 1], \[Ellipsis],
1 + Subscript[d, 1 + j]}, -E^(2 c z)]), {j, 0, n}] +
(-1)^(-1 + u) E^((p - c (-1 - 2 k + u)) z)
Sum[(1/(-j + n)!) ((-1)^j (c (1 + 2 k) + p)^(-1 - j) z^(-j + n)
HypergeometricPFQ[{Subscript[e, 1], \[Ellipsis],
Subscript[e, 1 + j], u}, {1 + Subscript[e, 1], \[Ellipsis],
1 + Subscript[e, 1 + j]}, -E^(2 c z)]), {j, 0, n}]),
{k, 0, Floor[(1/2) (-2 + u)]}] + 2^(1 - m) E^(c u z) n!
Sum[Binomial[m, k] Sum[(-1)^i Binomial[-1 + u, i]
(E^(((-I) a (-2 k + m) + p + c (-1 - 2 i + u)) z)
Sum[(1/(-j + n)!) ((-1)^j ((-I) a (-2 k + m) + p + c (-1 - 2 i +
2 u))^(-1 - j) z^(-j + n) HypergeometricPFQ[{Subscript[f,
1], \[Ellipsis], Subscript[f, 1 + j], u},
{1 + Subscript[f, 1], \[Ellipsis], 1 + Subscript[f, 1 + j]},
-E^(2 c z)]), {j, 0, n}] + (-1)^(-1 + u)
E^(((-I) a (-2 k + m) + p - c (-1 - 2 i + u)) z)
Sum[(1/(-j + n)!) ((-1)^j (c (1 + 2 i) - I a (-2 k + m) + p)^
(-1 - j) z^(-j + n) HypergeometricPFQ[{Subscript[g, 1],
\[Ellipsis], Subscript[g, 1 + j], u}, {1 + Subscript[g, 1],
\[Ellipsis], 1 + Subscript[g, 1 + j]}, -E^(2 c z)]),
{j, 0, n}]), {i, 0, Floor[(1/2) (-2 + u)]}],
{k, 0, Floor[(1/2) (-1 + m)]}] + 2^(1 - m) E^(c u z) n!
Sum[Binomial[m, k] Sum[(-1)^i Binomial[-1 + u, i]
(E^((I a (-2 k + m) + p + c (-1 - 2 i + u)) z)
Sum[(1/(-j + n)!) ((-1)^j (I a (-2 k + m) + p + c (-1 - 2 i + 2 u))^
(-1 - j) z^(-j + n) HypergeometricPFQ[{Subscript[h, 1],
\[Ellipsis], Subscript[h, 1 + j], u}, {1 + Subscript[h, 1],
\[Ellipsis], 1 + Subscript[h, 1 + j]}, -E^(2 c z)]),
{j, 0, n}] + (-1)^(-1 + u) E^((I a (-2 k + m) + p -
c (-1 - 2 i + u)) z) Sum[(1/(-j + n)!)
((-1)^j (c (1 + 2 i) + I a (-2 k + m) + p)^(-1 - j) z^(-j + n)
HypergeometricPFQ[{Subscript[i, 1], \[Ellipsis], Subscript[i,
1 + j], u}, {1 + Subscript[i, 1], \[Ellipsis], 1 +
Subscript[i, 1 + j]}, -E^(2 c z)]), {j, 0, n}]),
{i, 0, Floor[(1/2) (-2 + u)]}], {k, 0, Floor[(1/2) (-1 + m)]}] /;
Subscript[a, 1] == Subscript[a, 2] == \[Ellipsis] == Subscript[a, n + 1] ==
(c u + p)/(2 c) && Subscript[b, 1] == Subscript[b, 2] == \[Ellipsis] ==
Subscript[b, n + 1] == (c u - I a (-2 k + m) + p)/(2 c) &&
Subscript[c, 1] == Subscript[c, 2] == \[Ellipsis] == Subscript[c, n + 1] ==
(c u + I a (-2 k + m) + p)/(2 c) && Subscript[d, 1] == Subscript[d, 2] ==
\[Ellipsis] == Subscript[d, n + 1] == (p + c (-2 k + 2 u - 1))/(2 c) &&
Subscript[e, 1] == Subscript[e, 2] == \[Ellipsis] == Subscript[e, n + 1] ==
(p + c (2 k + 1))/(2 c) && Subscript[f, 1] == Subscript[f, 2] ==
\[Ellipsis] == Subscript[f, n + 1] ==
((-I) a (-2 k + m) + p + c (-2 i + 2 u - 1))/(2 c) &&
Subscript[g, 1] == Subscript[g, 2] == \[Ellipsis] == Subscript[g, n + 1] ==
((-I) a (-2 k + m) + p + c (2 i + 1))/(2 c) &&
Subscript[h, 1] == Subscript[h, 2] == \[Ellipsis] == Subscript[h, n + 1] ==
(I a (-2 k + m) + p + c (-2 i + 2 u - 1))/(2 c) &&
Subscript[i, 1] == Subscript[i, 2] == \[Ellipsis] == Subscript[i, n + 1] ==
(I a (-2 k + m) + p + c (2 i + 1))/(2 c) && Element[n, Integers] &&
n >= 0 && Element[m, Integers] && m > 0 && Element[u, Integers] && u > 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["z", "n"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["p", " ", "z"]]], SuperscriptBox[RowBox[List["Cos", "[", RowBox[List["a", " ", "z"]], "]"]], "m"], SuperscriptBox[RowBox[List["Tanh", "[", RowBox[List["c", " ", "z"]], "]"]], "u"], RowBox[List["Csch", "[", RowBox[List["c", " ", "z"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List[SuperscriptBox["\[ImaginaryI]", RowBox[List[RowBox[List["-", "1"]], "+", "u"]]], " ", SuperscriptBox["2", RowBox[List["1", "-", "m"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["p", "+", RowBox[List["c", " ", "u"]]]], ")"]], " ", "z"]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "u"]], ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "u"]], ")"]]]]]], "]"]], " ", RowBox[List["n", "!"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "u"]], ",", "2"]], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["c", " ", "u"]]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["a", RowBox[List["1", "+", "j"]]], ",", "u"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["a", "1"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "+", SubscriptBox["a", RowBox[List["1", "+", "j"]]]]]]], "}"]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], ")"]]]]]]]], "+", RowBox[List[SuperscriptBox["\[ImaginaryI]", RowBox[List[RowBox[List["-", "1"]], "+", "u"]]], " ", SuperscriptBox["2", RowBox[List["1", "-", "m"]]], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "u"]], ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "u"]], ")"]]]]]], "]"]], " ", RowBox[List["n", "!"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "u"]], ",", "2"]], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p", "+", RowBox[List["c", " ", "u"]]]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p", "+", RowBox[List["c", " ", "u"]]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["b", RowBox[List["1", "+", "j"]]], ",", "u"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["b", "1"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "+", SubscriptBox["b", RowBox[List["1", "+", "j"]]]]]]], "}"]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], ")"]]]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p", "+", RowBox[List["c", " ", "u"]]]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p", "+", RowBox[List["c", " ", "u"]]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["c", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["c", RowBox[List["1", "+", "j"]]], ",", "u"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["c", "1"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "+", SubscriptBox["c", RowBox[List["1", "+", "j"]]]]]]], "}"]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], ")"]]]]]]]]]], ")"]]]]]]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List["1", "-", "m"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "u", " ", "z"]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["n", "!"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", "u"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "u"]], ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["p", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", "k"]], "+", "u"]], ")"]]]]]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", "k"]], "+", RowBox[List["2", " ", "u"]]]], ")"]]]]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["d", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["d", RowBox[List["1", "+", "j"]]], ",", "u"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["d", "1"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "+", SubscriptBox["d", RowBox[List["1", "+", "j"]]]]]]], "}"]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], ")"]]]]]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "+", "u"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["p", "-", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", "k"]], "+", "u"]], ")"]]]]]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "k"]]]], ")"]]]], "+", "p"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["e", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["e", RowBox[List["1", "+", "j"]]], ",", "u"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["e", "1"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "+", SubscriptBox["e", RowBox[List["1", "+", "j"]]]]]]], "}"]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], ")"]]]]]]]]]], ")"]]]]]]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List["1", "-", "m"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "u", " ", "z"]]], " ", RowBox[List["n", "!"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["i", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", "u"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "i"], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "u"]], ",", "i"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", "i"]], "+", "u"]], ")"]]]]]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", "i"]], "+", RowBox[List["2", " ", "u"]]]], ")"]]]]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["f", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["f", RowBox[List["1", "+", "j"]]], ",", "u"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["f", "1"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "+", SubscriptBox["f", RowBox[List["1", "+", "j"]]]]]]], "}"]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], ")"]]]]]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "+", "u"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p", "-", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", "i"]], "+", "u"]], ")"]]]]]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "i"]]]], ")"]]]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["g", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["g", RowBox[List["1", "+", "j"]]], ",", "u"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["g", "1"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "+", SubscriptBox["g", RowBox[List["1", "+", "j"]]]]]]], "}"]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], ")"]]]]]]]]]], ")"]]]]]]]]]]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List["1", "-", "m"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "u", " ", "z"]]], " ", RowBox[List["n", "!"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["i", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", "u"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "i"], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "u"]], ",", "i"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", "i"]], "+", "u"]], ")"]]]]]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", "i"]], "+", RowBox[List["2", " ", "u"]]]], ")"]]]]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["h", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["h", RowBox[List["1", "+", "j"]]], ",", "u"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["h", "1"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "+", SubscriptBox["h", RowBox[List["1", "+", "j"]]]]]]], "}"]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], ")"]]]]]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "+", "u"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p", "-", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", "i"]], "+", "u"]], ")"]]]]]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "i"]]]], ")"]]]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["i", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["i", RowBox[List["1", "+", "j"]]], ",", "u"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["i", "1"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "+", SubscriptBox["i", RowBox[List["1", "+", "j"]]]]]]], "}"]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], ")"]]]]]]]]]], ")"]]]]]]]]]]]]]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["a", "1"], "\[Equal]", SubscriptBox["a", "2"], "\[Equal]", "\[Ellipsis]", "\[Equal]", SubscriptBox["a", RowBox[List["n", "+", "1"]]], "\[Equal]", FractionBox[RowBox[List[RowBox[List["c", " ", "u"]], "+", "p"]], RowBox[List["2", " ", "c"]]]]], "\[And]", RowBox[List[SubscriptBox["b", "1"], "\[Equal]", SubscriptBox["b", "2"], "\[Equal]", "\[Ellipsis]", "\[Equal]", SubscriptBox["b", RowBox[List["n", "+", "1"]]], "\[Equal]", FractionBox[RowBox[List[RowBox[List["c", " ", "u"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p"]], RowBox[List["2", " ", "c"]]]]], "\[And]", RowBox[List[SubscriptBox["c", "1"], "\[Equal]", SubscriptBox["c", "2"], "\[Equal]", "\[Ellipsis]", "\[Equal]", SubscriptBox["c", RowBox[List["n", "+", "1"]]], "\[Equal]", FractionBox[RowBox[List[RowBox[List["c", " ", "u"]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p"]], RowBox[List["2", " ", "c"]]]]], "\[And]", RowBox[List[SubscriptBox["d", "1"], "\[Equal]", SubscriptBox["d", "2"], "\[Equal]", "\[Ellipsis]", "\[Equal]", SubscriptBox["d", RowBox[List["n", "+", "1"]]], "\[Equal]", FractionBox[RowBox[List["p", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", RowBox[List["2", " ", "u"]], "-", "1"]], ")"]]]]]], RowBox[List["2", " ", "c"]]]]], "\[And]", RowBox[List[SubscriptBox["e", "1"], "\[Equal]", SubscriptBox["e", "2"], "\[Equal]", "\[Ellipsis]", "\[Equal]", SubscriptBox["e", RowBox[List["n", "+", "1"]]], "\[Equal]", FractionBox[RowBox[List["p", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]], ")"]]]]]], RowBox[List["2", " ", "c"]]]]], "\[And]", RowBox[List[SubscriptBox["f", "1"], "\[Equal]", SubscriptBox["f", "2"], "\[Equal]", "\[Ellipsis]", "\[Equal]", SubscriptBox["f", RowBox[List["n", "+", "1"]]], "\[Equal]", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "i"]], "+", RowBox[List["2", " ", "u"]], "-", "1"]], ")"]]]]]], RowBox[List["2", " ", "c"]]]]], "\[And]", RowBox[List[SubscriptBox["g", "1"], "\[Equal]", SubscriptBox["g", "2"], "\[Equal]", "\[Ellipsis]", "\[Equal]", SubscriptBox["g", RowBox[List["n", "+", "1"]]], "\[Equal]", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "i"]], "+", "1"]], ")"]]]]]], RowBox[List["2", " ", "c"]]]]], "\[And]", RowBox[List[SubscriptBox["h", "1"], "\[Equal]", SubscriptBox["h", "2"], "\[Equal]", "\[Ellipsis]", "\[Equal]", SubscriptBox["h", RowBox[List["n", "+", "1"]]], "\[Equal]", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "i"]], "+", RowBox[List["2", " ", "u"]], "-", "1"]], ")"]]]]]], RowBox[List["2", " ", "c"]]]]], "\[And]", RowBox[List[SubscriptBox["i", "1"], "\[Equal]", SubscriptBox["i", "2"], "\[Equal]", "\[Ellipsis]", "\[Equal]", SubscriptBox["i", RowBox[List["n", "+", "1"]]], "\[Equal]", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "i"]], "+", "1"]], ")"]]]]]], RowBox[List["2", " ", "c"]]]]], "\[And]", RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]], "\[And]", RowBox[List["m", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", ">", "0"]], "\[And]", RowBox[List["u", "\[Element]", "Integers"]], "\[And]", RowBox[List["u", ">", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mo> ∫ </mo> <mrow> <mrow> <msup> <mi> z </mi> <mi> n </mi> </msup> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> p </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <msup> <mi> cos </mi> <mi> m </mi> </msup> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> tanh </mi> <mi> u </mi> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> csch </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <msup> <mi> ⅈ </mi> <mrow> <mi> u </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mn> 2 </mn> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> m </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> u </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> <mtr> <mtd> <mfrac> <mi> m </mi> <mn> 2 </mn> </mfrac> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["m", Identity, Rule[Editable, True]]], List[TagBox[FractionBox["m", "2"], Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mi> u </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <mi> u </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox[RowBox[List["u", "-", "1"]], Identity, Rule[Editable, True]]], List[TagBox[FractionBox[RowBox[List["u", "-", "1"]], "2"], Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <semantics> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mi> mod </mi> <mo> ⁢ </mo> <mn> 2 </mn> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <rem /> <ci> $CellContext`m </ci> <cn type='integer'> 2 </cn> </apply> </annotation-xml> </semantics> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <semantics> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> u </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> mod </mi> <mo> ⁢ </mo> <mn> 2 </mn> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <rem /> <apply> <plus /> <cn type='integer'> -1 </cn> <ci> $CellContext`u </ci> </apply> <cn type='integer'> 2 </cn> </apply> </annotation-xml> </semantics> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> u </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mi> n </mi> <mo> - </mo> <mi> j </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> j </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mrow> <mi> j </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </msub> <msub> <mi> F </mi> <mrow> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> u </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mfrac> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mfrac> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> u </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mfrac> <mo> , </mo> <mi> u </mi> </mrow> <mo> ; </mo> <mrow> <mrow> <mfrac> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> u </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mrow> <mfrac> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> u </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <msup> <mi> ⅇ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox[RowBox[List["j", "+", "2"]], TraditionalForm]], SubscriptBox["F", FormBox[RowBox[List["j", "+", "1"]], TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List["p", "+", RowBox[List["c", " ", "u"]]]], RowBox[List["2", " ", "c"]]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[FractionBox[RowBox[List["p", "+", RowBox[List["c", " ", "u"]]]], RowBox[List["2", " ", "c"]]], HypergeometricPFQ], ",", TagBox["u", HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox[RowBox[List["p", "+", RowBox[List["c", " ", "u"]]]], RowBox[List["2", " ", "c"]]], "+", "1"]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[RowBox[List[FractionBox[RowBox[List["p", "+", RowBox[List["c", " ", "u"]]]], RowBox[List["2", " ", "c"]]], "+", "1"]], HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], HypergeometricPFQ]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], HypergeometricPFQ] </annotation> </semantics> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> ⅈ </mi> <mrow> <mi> u </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mn> 2 </mn> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> m </mi> </mrow> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mi> u </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <mi> u </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox[RowBox[List["u", "-", "1"]], Identity, Rule[Editable, True]]], List[TagBox[FractionBox[RowBox[List["u", "-", "1"]], "2"], Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <semantics> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> u </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> mod </mi> <mo> ⁢ </mo> <mn> 2 </mn> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <rem /> <apply> <plus /> <cn type='integer'> -1 </cn> <ci> $CellContext`u </ci> </apply> <cn type='integer'> 2 </cn> </apply> </annotation-xml> </semantics> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ⌋ </mo> </mrow> </munderover> <mrow> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["m", Identity, Rule[Editable, True]]], List[TagBox["k", Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> p </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> u </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> p </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> u </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mi> n </mi> <mo> - </mo> <mi> j </mi> </mrow> </msup> <mtext> </mtext> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> j </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mrow> <mi> j </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </msub> <msub> <mi> F </mi> <mrow> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> p </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> u </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mfrac> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mfrac> <mrow> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> p </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> u </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mfrac> <mo> , </mo> <mi> u </mi> </mrow> <mo> ; </mo> <mrow> <mrow> <mfrac> <mrow> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> p </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> u </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mrow> <mfrac> <mrow> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> p </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> u </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <msup> <mi> ⅇ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox[RowBox[List["j", "+", "2"]], TraditionalForm]], SubscriptBox["F", FormBox[RowBox[List["j", "+", "1"]], TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "k"]]]], ")"]]]], "+", "p", "+", RowBox[List["c", " ", "u"]]]], RowBox[List["2", " ", "c"]]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "k"]]]], ")"]]]], "+", "p", "+", RowBox[List["c", " ", "u"]]]], RowBox[List["2", " ", "c"]]], HypergeometricPFQ], ",", TagBox["u", HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "k"]]]], ")"]]]], "+", "p", "+", RowBox[List["c", " ", "u"]]]], RowBox[List["2", " ", "c"]]], "+", "1"]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[RowBox[List[FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "k"]]]], ")"]]]], "+", "p", "+", RowBox[List["c", " ", "u"]]]], RowBox[List["2", " ", "c"]]], "+", "1"]], HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], HypergeometricPFQ]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], HypergeometricPFQ] </annotation> </semantics> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> p </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> u </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> p </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> u </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mi> n </mi> <mo> - </mo> <mi> j </mi> </mrow> </msup> <mtext> </mtext> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> j </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mrow> <mi> j </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </msub> <msub> <mi> F </mi> <mrow> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> p </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> u </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mfrac> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mfrac> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> p </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> u </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mfrac> <mo> , </mo> <mi> u </mi> </mrow> <mo> ; </mo> <mrow> <mrow> <mfrac> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> p </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> u </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mrow> <mfrac> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> p </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> u </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <msup> <mi> ⅇ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox[RowBox[List["j", "+", "2"]], TraditionalForm]], SubscriptBox["F", FormBox[RowBox[List["j", "+", "1"]], TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "k"]]]], ")"]]]], "+", "p", "+", RowBox[List["c", " ", "u"]]]], RowBox[List["2", " ", "c"]]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "k"]]]], ")"]]]], "+", "p", "+", RowBox[List["c", " ", "u"]]]], RowBox[List["2", " ", "c"]]], HypergeometricPFQ], ",", TagBox["u", HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "k"]]]], ")"]]]], "+", "p", "+", RowBox[List["c", " ", "u"]]]], RowBox[List["2", " ", "c"]]], "+", "1"]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[RowBox[List[FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "k"]]]], ")"]]]], "+", "p", "+", RowBox[List["c", " ", "u"]]]], RowBox[List["2", " ", "c"]]], "+", "1"]], HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], HypergeometricPFQ]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], HypergeometricPFQ] </annotation> </semantics> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mn> 2 </mn> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> m </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> u </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> <mtr> <mtd> <mfrac> <mi> m </mi> <mn> 2 </mn> </mfrac> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["m", Identity, Rule[Editable, True]]], List[TagBox[FractionBox["m", "2"], Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <semantics> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mi> mod </mi> <mo> ⁢ </mo> <mn> 2 </mn> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <rem /> <ci> $CellContext`m </ci> <cn type='integer'> 2 </cn> </apply> </annotation-xml> </semantics> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mi> u </mi> <mo> - </mo> <mn> 2 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ⌋ </mo> </mrow> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mi> u </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox[RowBox[List["u", "-", "1"]], Identity, Rule[Editable, True]]], List[TagBox["k", Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> u </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> - </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mi> u </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mi> n </mi> <mo> - </mo> <mi> j </mi> </mrow> </msup> <mtext> </mtext> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> j </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mrow> <mi> j </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </msub> <msub> <mi> F </mi> <mrow> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mfrac> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mfrac> <mrow> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mfrac> <mo> , </mo> <mi> u </mi> </mrow> <mo> ; </mo> <mrow> <mrow> <mfrac> <mrow> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mrow> <mfrac> <mrow> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <msup> <mi> ⅇ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox[RowBox[List["j", "+", "2"]], TraditionalForm]], SubscriptBox["F", FormBox[RowBox[List["j", "+", "1"]], TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]], ")"]]]], "+", "p"]], RowBox[List["2", " ", "c"]]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[FractionBox[RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]], ")"]]]], "+", "p"]], RowBox[List["2", " ", "c"]]], HypergeometricPFQ], ",", TagBox["u", HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox[RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]], ")"]]]], "+", "p"]], RowBox[List["2", " ", "c"]]], "+", "1"]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[RowBox[List[FractionBox[RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]], ")"]]]], "+", "p"]], RowBox[List["2", " ", "c"]]], "+", "1"]], HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], HypergeometricPFQ]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], HypergeometricPFQ] </annotation> </semantics> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mi> u </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> u </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mi> n </mi> <mo> - </mo> <mi> j </mi> </mrow> </msup> <mtext> </mtext> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> j </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mrow> <mi> j </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </msub> <msub> <mi> F </mi> <mrow> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> u </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mfrac> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mfrac> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> u </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mfrac> <mo> , </mo> <mi> u </mi> </mrow> <mo> ; </mo> <mrow> <mrow> <mfrac> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> u </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mrow> <mfrac> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> u </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <msup> <mi> ⅇ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox[RowBox[List["j", "+", "2"]], TraditionalForm]], SubscriptBox["F", FormBox[RowBox[List["j", "+", "1"]], TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List["p", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", RowBox[List["2", " ", "u"]], "-", "1"]], ")"]]]]]], RowBox[List["2", " ", "c"]]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[FractionBox[RowBox[List["p", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", RowBox[List["2", " ", "u"]], "-", "1"]], ")"]]]]]], RowBox[List["2", " ", "c"]]], HypergeometricPFQ], ",", TagBox["u", HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox[RowBox[List["p", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", RowBox[List["2", " ", "u"]], "-", "1"]], ")"]]]]]], RowBox[List["2", " ", "c"]]], "+", "1"]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[RowBox[List[FractionBox[RowBox[List["p", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", RowBox[List["2", " ", "u"]], "-", "1"]], ")"]]]]]], RowBox[List["2", " ", "c"]]], "+", "1"]], HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], HypergeometricPFQ]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], HypergeometricPFQ] </annotation> </semantics> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mn> 2 </mn> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> m </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> u </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ⌋ </mo> </mrow> </munderover> <mrow> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["m", Identity, Rule[Editable, True]]], List[TagBox["k", Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> i </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mi> u </mi> <mo> - </mo> <mn> 2 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ⌋ </mo> </mrow> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> i </mi> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mi> u </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mi> i </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox[RowBox[List["u", "-", "1"]], Identity, Rule[Editable, True]]], List[TagBox["i", Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> u </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> p </mi> <mo> - </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> i </mi> </mrow> <mo> + </mo> <mi> u </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> i </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mi> n </mi> <mo> - </mo> <mi> j </mi> </mrow> </msup> <mtext> </mtext> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> j </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mrow> <mi> j </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </msub> <msub> <mi> F </mi> <mrow> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> i </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mfrac> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mfrac> <mrow> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> i </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mfrac> <mo> , </mo> <mi> u </mi> </mrow> <mo> ; </mo> <mrow> <mrow> <mfrac> <mrow> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> i </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mrow> <mfrac> <mrow> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> i </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <msup> <mi> ⅇ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox[RowBox[List["j", "+", "2"]], TraditionalForm]], SubscriptBox["F", FormBox[RowBox[List["j", "+", "1"]], TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "i"]], "+", "1"]], ")"]]]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "k"]]]], ")"]]]], "+", "p"]], RowBox[List["2", " ", "c"]]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[FractionBox[RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "i"]], "+", "1"]], ")"]]]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "k"]]]], ")"]]]], "+", "p"]], RowBox[List["2", " ", "c"]]], HypergeometricPFQ], ",", TagBox["u", HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox[RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "i"]], "+", "1"]], ")"]]]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "k"]]]], ")"]]]], "+", "p"]], RowBox[List["2", " ", "c"]]], "+", "1"]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[RowBox[List[FractionBox[RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "i"]], "+", "1"]], ")"]]]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "k"]]]], ")"]]]], "+", "p"]], RowBox[List["2", " ", "c"]]], "+", "1"]], HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], HypergeometricPFQ]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], HypergeometricPFQ] </annotation> </semantics> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> p </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> i </mi> </mrow> <mo> + </mo> <mi> u </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> p </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> i </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> u </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mi> n </mi> <mo> - </mo> <mi> j </mi> </mrow> </msup> <mtext> </mtext> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> j </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mrow> <mi> j </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </msub> <msub> <mi> F </mi> <mrow> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> p </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> i </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> u </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mfrac> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mfrac> <mrow> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> p </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> i </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> u </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mfrac> <mo> , </mo> <mi> u </mi> </mrow> <mo> ; </mo> <mrow> <mrow> <mfrac> <mrow> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> p </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> i </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> u </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mrow> <mfrac> <mrow> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> p </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> i </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> u </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <msup> <mi> ⅇ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox[RowBox[List["j", "+", "2"]], TraditionalForm]], SubscriptBox["F", FormBox[RowBox[List["j", "+", "1"]], TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "k"]]]], ")"]]]], "+", "p", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "i"]], "+", RowBox[List["2", " ", "u"]], "-", "1"]], ")"]]]]]], RowBox[List["2", " ", "c"]]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "k"]]]], ")"]]]], "+", "p", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "i"]], "+", RowBox[List["2", " ", "u"]], "-", "1"]], ")"]]]]]], RowBox[List["2", " ", "c"]]], HypergeometricPFQ], ",", TagBox["u", HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "k"]]]], ")"]]]], "+", "p", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "i"]], "+", RowBox[List["2", " ", "u"]], "-", "1"]], ")"]]]]]], RowBox[List["2", " ", "c"]]], "+", "1"]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[RowBox[List[FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "k"]]]], ")"]]]], "+", "p", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "i"]], "+", RowBox[List["2", " ", "u"]], "-", "1"]], ")"]]]]]], RowBox[List["2", " ", "c"]]], "+", "1"]], HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], HypergeometricPFQ]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], HypergeometricPFQ] </annotation> </semantics> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mn> 2 </mn> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> m </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> u </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ⌋ </mo> </mrow> </munderover> <mrow> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["m", Identity, Rule[Editable, True]]], List[TagBox["k", Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> i </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mi> u </mi> <mo> - </mo> <mn> 2 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ⌋ </mo> </mrow> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> i </mi> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mi> u </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mi> i </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox[RowBox[List["u", "-", "1"]], Identity, Rule[Editable, True]]], List[TagBox["i", Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> u </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> p </mi> <mo> - </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> i </mi> </mrow> <mo> + </mo> <mi> u </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> i </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mi> n </mi> <mo> - </mo> <mi> j </mi> </mrow> </msup> <mtext> </mtext> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> j </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mrow> <mi> j </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </msub> <msub> <mi> F </mi> <mrow> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> i </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mfrac> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mfrac> <mrow> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> i </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mfrac> <mo> , </mo> <mi> u </mi> </mrow> <mo> ; </mo> <mrow> <mrow> <mfrac> <mrow> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> i </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mrow> <mfrac> <mrow> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> i </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <msup> <mi> ⅇ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox[RowBox[List["j", "+", "2"]], TraditionalForm]], SubscriptBox["F", FormBox[RowBox[List["j", "+", "1"]], TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "i"]], "+", "1"]], ")"]]]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "k"]]]], ")"]]]], "+", "p"]], RowBox[List["2", " ", "c"]]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[FractionBox[RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "i"]], "+", "1"]], ")"]]]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "k"]]]], ")"]]]], "+", "p"]], RowBox[List["2", " ", "c"]]], HypergeometricPFQ], ",", TagBox["u", HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox[RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "i"]], "+", "1"]], ")"]]]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "k"]]]], ")"]]]], "+", "p"]], RowBox[List["2", " ", "c"]]], "+", "1"]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[RowBox[List[FractionBox[RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "i"]], "+", "1"]], ")"]]]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "k"]]]], ")"]]]], "+", "p"]], RowBox[List["2", " ", "c"]]], "+", "1"]], HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], HypergeometricPFQ]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], HypergeometricPFQ] </annotation> </semantics> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> p </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> i </mi> </mrow> <mo> + </mo> <mi> u </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> p </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> i </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> u </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mi> n </mi> <mo> - </mo> <mi> j </mi> </mrow> </msup> <mtext> </mtext> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> j </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mrow> <mi> j </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </msub> <msub> <mi> F </mi> <mrow> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> p </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> i </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> u </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mfrac> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mfrac> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> p </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> i </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> u </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mfrac> <mo> , </mo> <mi> u </mi> </mrow> <mo> ; </mo> <mrow> <mrow> <mfrac> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> p </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> i </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> u </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mrow> <mfrac> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> p </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> i </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> u </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <msup> <mi> ⅇ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox[RowBox[List["j", "+", "2"]], TraditionalForm]], SubscriptBox["F", FormBox[RowBox[List["j", "+", "1"]], TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "k"]]]], ")"]]]], "+", "p", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "i"]], "+", RowBox[List["2", " ", "u"]], "-", "1"]], ")"]]]]]], RowBox[List["2", " ", "c"]]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "k"]]]], ")"]]]], "+", "p", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "i"]], "+", RowBox[List["2", " ", "u"]], "-", "1"]], ")"]]]]]], RowBox[List["2", " ", "c"]]], HypergeometricPFQ], ",", TagBox["u", HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "k"]]]], ")"]]]], "+", "p", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "i"]], "+", RowBox[List["2", " ", "u"]], "-", "1"]], ")"]]]]]], RowBox[List["2", " ", "c"]]], "+", "1"]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[RowBox[List[FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "k"]]]], ")"]]]], "+", "p", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "i"]], "+", RowBox[List["2", " ", "u"]], "-", "1"]], ")"]]]]]], RowBox[List["2", " ", "c"]]], "+", "1"]], HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], HypergeometricPFQ]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], HypergeometricPFQ] </annotation> </semantics> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> n </mi> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> ∈ </mo> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> </mrow> <mo> ∧ </mo> <mrow> <mi> u </mi> <mo> ∈ </mo> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <ci> z </ci> <ci> n </ci> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <ci> p </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <cos /> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> <ci> m </ci> </apply> <apply> <power /> <apply> <tanh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <ci> u </ci> </apply> <apply> <csch /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <imaginaryi /> <apply> <plus /> <ci> u </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <ci> p </ci> <apply> <times /> <ci> c </ci> <ci> u </ci> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <ci> Binomial </ci> <ci> m </ci> <apply> <times /> <ci> m </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Binomial </ci> <apply> <plus /> <ci> u </ci> <cn type='integer'> -1 </cn> </apply> <apply> <times /> <apply> <plus /> <ci> u </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <factorial /> <ci> n </ci> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <rem /> <ci> $CellContext`m </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <rem /> <apply> <plus /> <cn type='integer'> -1 </cn> <ci> $CellContext`u </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <power /> <apply> <plus /> <ci> p </ci> <apply> <times /> <ci> c </ci> <ci> u </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <apply> <plus /> <ci> p </ci> <apply> <times /> <ci> c </ci> <ci> u </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> … </ci> <apply> <times /> <apply> <plus /> <ci> p </ci> <apply> <times /> <ci> c </ci> <ci> u </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> u </ci> </list> <list> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> p </ci> <apply> <times /> <ci> c </ci> <ci> u </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <ci> … </ci> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> p </ci> <apply> <times /> <ci> c </ci> <ci> u </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <imaginaryi /> <apply> <plus /> <ci> u </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> <apply> <ci> Binomial </ci> <apply> <plus /> <ci> u </ci> <cn type='integer'> -1 </cn> </apply> <apply> <times /> <apply> <plus /> <ci> u </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <factorial /> <ci> n </ci> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <rem /> <apply> <plus /> <cn type='integer'> -1 </cn> <ci> $CellContext`u </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <ci> Binomial </ci> <ci> m </ci> <ci> k </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> <ci> a </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <ci> p </ci> <apply> <times /> <ci> c </ci> <ci> u </ci> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> <ci> a </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <ci> p </ci> <apply> <times /> <ci> c </ci> <ci> u </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> a </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <ci> p </ci> <apply> <times /> <ci> c </ci> <ci> u </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> … </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> a </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <ci> p </ci> <apply> <times /> <ci> c </ci> <ci> u </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> u </ci> </list> <list> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> a </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <ci> p </ci> <apply> <times /> <ci> c </ci> <ci> u </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <ci> … </ci> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> a </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <ci> p </ci> <apply> <times /> <ci> c </ci> <ci> u </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> a </ci> <imaginaryi /> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <ci> p </ci> <apply> <times /> <ci> c </ci> <ci> u </ci> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> a </ci> <imaginaryi /> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <ci> p </ci> <apply> <times /> <ci> c </ci> <ci> u </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> a </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <ci> p </ci> <apply> <times /> <ci> c </ci> <ci> u </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> … </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> a </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <ci> p </ci> <apply> <times /> <ci> c </ci> <ci> u </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> u </ci> </list> <list> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> a </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <ci> p </ci> <apply> <times /> <ci> c </ci> <ci> u </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <ci> … </ci> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> a </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <ci> p </ci> <apply> <times /> <ci> c </ci> <ci> u </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> u </ci> <ci> z </ci> </apply> </apply> <apply> <ci> Binomial </ci> <ci> m </ci> <apply> <times /> <ci> m </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <factorial /> <ci> n </ci> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <rem /> <ci> $CellContext`m </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <apply> <plus /> <ci> u </ci> <cn type='integer'> -2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <ci> Binomial </ci> <apply> <plus /> <ci> u </ci> <cn type='integer'> -1 </cn> </apply> <ci> k </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> u </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> k </ci> </apply> <ci> u </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <ci> p </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <ci> p </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> … </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <ci> p </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> u </ci> </list> <list> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <ci> p </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <ci> … </ci> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <ci> p </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <ci> p </ci> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> k </ci> </apply> <ci> u </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <power /> <apply> <plus /> <ci> p </ci> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> u </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <apply> <plus /> <ci> p </ci> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> u </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> … </ci> <apply> <times /> <apply> <plus /> <ci> p </ci> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> u </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> u </ci> </list> <list> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> p </ci> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> u </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <ci> … </ci> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> p </ci> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> u </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> u </ci> <ci> z </ci> </apply> </apply> <apply> <factorial /> <ci> n </ci> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <ci> Binomial </ci> <ci> m </ci> <ci> k </ci> </apply> <apply> <sum /> <bvar> <ci> i </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <apply> <plus /> <ci> u </ci> <cn type='integer'> -2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> i </ci> </apply> <apply> <ci> Binomial </ci> <apply> <plus /> <ci> u </ci> <cn type='integer'> -1 </cn> </apply> <ci> i </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> u </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> <ci> a </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> i </ci> </apply> <ci> u </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> i </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> a </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> <ci> p </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> i </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> a </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> <ci> p </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> … </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> i </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> a </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> <ci> p </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> u </ci> </list> <list> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> i </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> a </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> <ci> p </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <ci> … </ci> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> i </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> a </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> <ci> p </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> <ci> a </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <ci> p </ci> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> i </ci> </apply> <ci> u </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> <ci> a </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <ci> p </ci> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> i </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> u </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> a </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <ci> p </ci> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> i </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> u </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> … </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> a </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <ci> p </ci> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> i </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> u </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> u </ci> </list> <list> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> a </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <ci> p </ci> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> i </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> u </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <ci> … </ci> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> a </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <ci> p </ci> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> i </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> u </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> u </ci> <ci> z </ci> </apply> </apply> <apply> <factorial /> <ci> n </ci> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <ci> Binomial </ci> <ci> m </ci> <ci> k </ci> </apply> <apply> <sum /> <bvar> <ci> i </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <apply> <plus /> <ci> u </ci> <cn type='integer'> -2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> i </ci> </apply> <apply> <ci> Binomial </ci> <apply> <plus /> <ci> u </ci> <cn type='integer'> -1 </cn> </apply> <ci> i </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> u </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> a </ci> <imaginaryi /> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> i </ci> </apply> <ci> u </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> i </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <ci> a </ci> <imaginaryi /> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <ci> p </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> i </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> a </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <ci> p </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> … </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> i </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> a </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <ci> p </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> u </ci> </list> <list> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> i </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> a </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <ci> p </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <ci> … </ci> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> i </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> a </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <ci> p </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> a </ci> <imaginaryi /> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <ci> p </ci> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> i </ci> </apply> <ci> u </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> a </ci> <imaginaryi /> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <ci> p </ci> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> i </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> u </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> a </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <ci> p </ci> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> i </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> u </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> … </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> a </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <ci> p </ci> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> i </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> u </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> u </ci> </list> <list> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> a </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <ci> p </ci> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> i </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> u </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <ci> … </ci> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> a </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <ci> p </ci> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> i </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> u </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <ci> n </ci> <ci> ℕ </ci> </apply> <apply> <in /> <ci> m </ci> <apply> <ci> SuperPlus </ci> <ci> ℕ </ci> </apply> </apply> <apply> <in /> <ci> u </ci> <apply> <ci> SuperPlus </ci> <ci> ℕ </ci> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["z_", "n_"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["p_", " ", "z_"]]], " ", SuperscriptBox[RowBox[List["Cos", "[", RowBox[List["a_", " ", "z_"]], "]"]], "m_"], " ", SuperscriptBox[RowBox[List["Tanh", "[", RowBox[List["c_", " ", "z_"]], "]"]], "u_"], " ", RowBox[List["Csch", "[", RowBox[List["c_", " ", "z_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[SuperscriptBox["\[ImaginaryI]", RowBox[List[RowBox[List["-", "1"]], "+", "u"]]], " ", SuperscriptBox["2", RowBox[List["1", "-", "m"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["p", "+", RowBox[List["c", " ", "u"]]]], ")"]], " ", "z"]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "u"]], ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "u"]], ")"]]]]]], "]"]], " ", RowBox[List["n", "!"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "u"]], ",", "2"]], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["c", " ", "u"]]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["Join", "[", RowBox[List[RowBox[List["Table", "[", RowBox[List[FractionBox[RowBox[List["p", "+", RowBox[List["c", " ", "u"]]]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["{", RowBox[List["K$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], ",", RowBox[List["{", "u", "}"]]]], "]"]], ",", RowBox[List["Join", "[", RowBox[List["Table", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List["p", "+", RowBox[List["c", " ", "u"]]]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["{", RowBox[List["K$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], "]"]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]]]]]], "+", RowBox[List[SuperscriptBox["\[ImaginaryI]", RowBox[List[RowBox[List["-", "1"]], "+", "u"]]], " ", SuperscriptBox["2", RowBox[List["1", "-", "m"]]], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "u"]], ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "u"]], ")"]]]]]], "]"]], " ", RowBox[List["n", "!"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "u"]], ",", "2"]], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p", "+", RowBox[List["c", " ", "u"]]]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p", "+", RowBox[List["c", " ", "u"]]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["Join", "[", RowBox[List[RowBox[List["Table", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p", "+", RowBox[List["c", " ", "u"]]]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["{", RowBox[List["K$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], ",", RowBox[List["{", "u", "}"]]]], "]"]], ",", RowBox[List["Join", "[", RowBox[List["Table", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p", "+", RowBox[List["c", " ", "u"]]]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["{", RowBox[List["K$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], "]"]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p", "+", RowBox[List["c", " ", "u"]]]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p", "+", RowBox[List["c", " ", "u"]]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["Join", "[", RowBox[List[RowBox[List["Table", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p", "+", RowBox[List["c", " ", "u"]]]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["{", RowBox[List["K$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], ",", RowBox[List["{", "u", "}"]]]], "]"]], ",", RowBox[List["Join", "[", RowBox[List["Table", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p", "+", RowBox[List["c", " ", "u"]]]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["{", RowBox[List["K$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], "]"]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]]]]]]]], ")"]]]]]]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List["1", "-", "m"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "u", " ", "z"]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["n", "!"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", "u"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "u"]], ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["p", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", "k"]], "+", "u"]], ")"]]]]]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", "k"]], "+", RowBox[List["2", " ", "u"]]]], ")"]]]]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["Join", "[", RowBox[List[RowBox[List["Table", "[", RowBox[List[FractionBox[RowBox[List["p", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", "k"]], "+", RowBox[List["2", " ", "u"]]]], ")"]]]]]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["{", RowBox[List["K$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], ",", RowBox[List["{", "u", "}"]]]], "]"]], ",", RowBox[List["Join", "[", RowBox[List["Table", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List["p", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", "k"]], "+", RowBox[List["2", " ", "u"]]]], ")"]]]]]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["{", RowBox[List["K$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], "]"]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]]]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "+", "u"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["p", "-", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", "k"]], "+", "u"]], ")"]]]]]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "k"]]]], ")"]]]], "+", "p"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["Join", "[", RowBox[List[RowBox[List["Table", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "k"]]]], ")"]]]], "+", "p"]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["{", RowBox[List["K$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], ",", RowBox[List["{", "u", "}"]]]], "]"]], ",", RowBox[List["Join", "[", RowBox[List["Table", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "k"]]]], ")"]]]], "+", "p"]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["{", RowBox[List["K$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], "]"]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]]]]]]]], ")"]]]]]]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List["1", "-", "m"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "u", " ", "z"]]], " ", RowBox[List["n", "!"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["i", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", "u"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "i"], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "u"]], ",", "i"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", "i"]], "+", "u"]], ")"]]]]]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", "i"]], "+", RowBox[List["2", " ", "u"]]]], ")"]]]]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["Join", "[", RowBox[List[RowBox[List["Table", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", "i"]], "+", RowBox[List["2", " ", "u"]]]], ")"]]]]]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["{", RowBox[List["K$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], ",", RowBox[List["{", "u", "}"]]]], "]"]], ",", RowBox[List["Join", "[", RowBox[List["Table", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", "i"]], "+", RowBox[List["2", " ", "u"]]]], ")"]]]]]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["{", RowBox[List["K$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], "]"]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]]]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "+", "u"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p", "-", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", "i"]], "+", "u"]], ")"]]]]]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "i"]]]], ")"]]]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["Join", "[", RowBox[List[RowBox[List["Table", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "i"]]]], ")"]]]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p"]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["{", RowBox[List["K$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], ",", RowBox[List["{", "u", "}"]]]], "]"]], ",", RowBox[List["Join", "[", RowBox[List["Table", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "i"]]]], ")"]]]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p"]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["{", RowBox[List["K$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], "]"]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]]]]]]]], ")"]]]]]]]]]]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List["1", "-", "m"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "u", " ", "z"]]], " ", RowBox[List["n", "!"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["i", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", "u"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "i"], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "u"]], ",", "i"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", "i"]], "+", "u"]], ")"]]]]]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", "i"]], "+", RowBox[List["2", " ", "u"]]]], ")"]]]]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["Join", "[", RowBox[List[RowBox[List["Table", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", "i"]], "+", RowBox[List["2", " ", "u"]]]], ")"]]]]]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["{", RowBox[List["K$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], ",", RowBox[List["{", "u", "}"]]]], "]"]], ",", RowBox[List["Join", "[", RowBox[List["Table", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p", "+", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", "i"]], "+", RowBox[List["2", " ", "u"]]]], ")"]]]]]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["{", RowBox[List["K$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], "]"]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]]]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "+", "u"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p", "-", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", "i"]], "+", "u"]], ")"]]]]]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "i"]]]], ")"]]]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["Join", "[", RowBox[List[RowBox[List["Table", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "i"]]]], ")"]]]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p"]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["{", RowBox[List["K$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], ",", RowBox[List["{", "u", "}"]]]], "]"]], ",", RowBox[List["Join", "[", RowBox[List["Table", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "i"]]]], ")"]]]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p"]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["{", RowBox[List["K$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], "]"]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]]]]]]]], ")"]]]]]]]]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]], "&&", RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", ">", "0"]], "&&", RowBox[List["u", "\[Element]", "Integers"]], "&&", RowBox[List["u", ">", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|