  
| 
 | 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   http://functions.wolfram.com/01.23.21.0311.01
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
 | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
    Integrate[1/(a + b Csch[z]^2)^2, z] == 
 ((-a + 2 b + a Cosh[2 z]) Csch[z]^4 (2 z (-a + 2 b + a Cosh[2 z]) + 
    (1/(a - b)^(3/2)) (Sqrt[b] (-3 a + 2 b) 
      ArcTan[(Sqrt[a - b] Tanh[z])/Sqrt[b]] (-a + 2 b + a Cosh[2 z])) + 
    (a b Sinh[2 z])/(a - b)))/(8 a^2 (a + b Csch[z]^2)^2) 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["Csch", "[", "z", "]"]], "2"]]]]], ")"]], "2"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", RowBox[List["2", " ", "b"]], "+", RowBox[List["a", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "z"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Csch", "[", "z", "]"]], "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", RowBox[List["2", " ", "b"]], "+", RowBox[List["a", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "z"]], "]"]]]]]], ")"]]]], "+", RowBox[List[FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], RowBox[List["3", "/", "2"]]]], RowBox[List["(", RowBox[List[SqrtBox["b"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "3"]], " ", "a"]], "+", RowBox[List["2", " ", "b"]]]], ")"]], " ", RowBox[List["ArcTan", "[", FractionBox[RowBox[List[SqrtBox[RowBox[List["a", "-", "b"]]], " ", RowBox[List["Tanh", "[", "z", "]"]]]], SqrtBox["b"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", RowBox[List["2", " ", "b"]], "+", RowBox[List["a", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "z"]], "]"]]]]]], ")"]]]], ")"]]]], "+", FractionBox[RowBox[List["a", " ", "b", " ", RowBox[List["Sinh", "[", RowBox[List["2", " ", "z"]], "]"]]]], RowBox[List["a", "-", "b"]]]]], ")"]]]], ")"]], "/", RowBox[List["(", RowBox[List["8", " ", SuperscriptBox["a", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["Csch", "[", "z", "]"]], "2"]]]]], ")"]], "2"]]], ")"]]]]]]]] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
 
  | 
   
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mo> ∫ </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> csch </mi>  <mn> 2 </mn>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ⅆ </mo>  <mi> z </mi>  </mrow>  </mrow>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mrow>  <mn> 8 </mn>  <mo> ⁢ </mo>  <msup>  <mi> a </mi>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> csch </mi>  <mn> 2 </mn>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mi> a </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mi> cosh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> - </mo>  <mi> a </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> csch </mi>  <mn> 4 </mn>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mi> cosh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> - </mo>  <mi> a </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mfrac>  <mrow>  <msqrt>  <mi> b </mi>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 3 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mi> cosh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> - </mo>  <mi> a </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> - </mo>  <mi> b </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> tan </mi>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ( </mo>  <mfrac>  <mrow>  <msqrt>  <mrow>  <mi> a </mi>  <mo> - </mo>  <mi> b </mi>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mi> tanh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  <msqrt>  <mi> b </mi>  </msqrt>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  <mtext>   </mtext>  <mo> + </mo>  <mfrac>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mi> sinh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mi> a </mi>  <mo> - </mo>  <mi> b </mi>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <int />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <apply>  <times />  <ci> b </ci>  <apply>  <power />  <apply>  <csch />  <ci> z </ci>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 8 </cn>  <apply>  <power />  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <apply>  <power />  <apply>  <csch />  <ci> z </ci>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <ci> a </ci>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <cosh />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> z </ci>  </apply>  </apply>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <csch />  <ci> z </ci>  </apply>  <cn type='integer'> 4 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> z </ci>  <apply>  <plus />  <apply>  <times />  <apply>  <cosh />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> z </ci>  </apply>  </apply>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <ci> b </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 3 </cn>  <ci> a </ci>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <cosh />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> z </ci>  </apply>  </apply>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  </apply>  <cn type='rational'> 3 <sep /> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <arctan />  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <tanh />  <ci> z </ci>  </apply>  <apply>  <power />  <apply>  <power />  <ci> b </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <ci> a </ci>  <ci> b </ci>  <apply>  <sinh />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 
  |   
  |  
  |  
  |   
  |  |  
  |   
  |  
  |  
  |   
  | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List["a_", "+", RowBox[List["b_", " ", SuperscriptBox[RowBox[List["Csch", "[", "z_", "]"]], "2"]]]]], ")"]], "2"]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", RowBox[List["2", " ", "b"]], "+", RowBox[List["a", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "z"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Csch", "[", "z", "]"]], "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", RowBox[List["2", " ", "b"]], "+", RowBox[List["a", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "z"]], "]"]]]]]], ")"]]]], "+", FractionBox[RowBox[List[SqrtBox["b"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "3"]], " ", "a"]], "+", RowBox[List["2", " ", "b"]]]], ")"]], " ", RowBox[List["ArcTan", "[", FractionBox[RowBox[List[SqrtBox[RowBox[List["a", "-", "b"]]], " ", RowBox[List["Tanh", "[", "z", "]"]]]], SqrtBox["b"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", RowBox[List["2", " ", "b"]], "+", RowBox[List["a", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "z"]], "]"]]]]]], ")"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], RowBox[List["3", "/", "2"]]]], "+", FractionBox[RowBox[List["a", " ", "b", " ", RowBox[List["Sinh", "[", RowBox[List["2", " ", "z"]], "]"]]]], RowBox[List["a", "-", "b"]]]]], ")"]]]], RowBox[List["8", " ", SuperscriptBox["a", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["Csch", "[", "z", "]"]], "2"]]]]], ")"]], "2"]]]]]]]]  |  
  |  
  |   
  |  
  |  
  | 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Date Added to functions.wolfram.com (modification date)
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 | 
  | 
  
  
  
 |  
 
 |