Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Csch






Mathematica Notation

Traditional Notation









Elementary Functions > Csch[z] > Integration > Indefinite integration > Involving functions of the direct function > Involving algebraic functions of the direct function > Involving ((a+b csch(c z))n)beta





http://functions.wolfram.com/01.23.21.0316.01









  


  










Input Form





Integrate[Csch[c z] Sqrt[(a + b Csch[c z])^3], z] == (Cosh[c z] Sqrt[1 + I Csch[c z]] Sqrt[2 + 2 I Csch[c z]] Sqrt[(a + b Csch[c z])^3] Sinh[c z]^3 (-(((I + Csch[c z]) Sqrt[(a + b Csch[c z])/(a - I b)] (8 a (a + I b) Sqrt[-((b (-I + Csch[c z]))/(a + I b))] EllipticE[ArcSin[Sqrt[(a + b Csch[c z])/(a - I b)]], (a - I b)/(a + I b)] + (3 a^2 - b^2) Sqrt[2 + 2 I Csch[c z]] EllipticF[ArcSin[Sqrt[-((b (I + Csch[c z]))/(a - I b))]], (I a + b)/(2 b)] - 8 I a b Sqrt[-((b (-I + Csch[c z]))/(a + I b))] EllipticF[ArcSin[Sqrt[(a + b Csch[c z])/(a - I b)]], (a - I b)/(a + I b)]) Sinh[c z])/ Sqrt[-((b (I + Csch[c z]))/(a - I b))]) - 2 b Coth[c z]^2 (b + a Sinh[c z])))/(3 c Sqrt[Cosh[c z]^2] Sqrt[1 + Cosh[2 c z]] (I + Sinh[c z]) (b + a Sinh[c z])^2)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[RowBox[List["Csch", "[", RowBox[List["c", " ", "z"]], "]"]], SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Csch", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]], "3"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]], " ", SqrtBox[RowBox[List["1", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Csch", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]], " ", SqrtBox[RowBox[List["2", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["Csch", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]], " ", SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Csch", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]], "3"]], " ", SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]], "3"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["\[ImaginaryI]", "+", RowBox[List["Csch", "[", RowBox[List["c", " ", "z"]], "]"]]]], ")"]], " ", SqrtBox[FractionBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Csch", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], RowBox[List["a", "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["8", " ", "a", " ", RowBox[List["(", RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", "b"]]]], ")"]], " ", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], "+", RowBox[List["Csch", "[", RowBox[List["c", " ", "z"]], "]"]]]], ")"]]]], RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", "b"]]]]]]]], " ", RowBox[List["EllipticE", "[", RowBox[List[RowBox[List["ArcSin", "[", SqrtBox[FractionBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Csch", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], RowBox[List["a", "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]]]], "]"]], ",", FractionBox[RowBox[List["a", "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]], RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", "b"]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["3", " ", SuperscriptBox["a", "2"]]], "-", SuperscriptBox["b", "2"]]], ")"]], " ", SqrtBox[RowBox[List["2", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["Csch", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]], " ", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["ArcSin", "[", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["b", " ", RowBox[List["(", RowBox[List["\[ImaginaryI]", "+", RowBox[List["Csch", "[", RowBox[List["c", " ", "z"]], "]"]]]], ")"]]]], RowBox[List["a", "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]]]]]], "]"]], ",", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "b"]], RowBox[List["2", " ", "b"]]]]], "]"]]]], "-", RowBox[List["8", " ", "\[ImaginaryI]", " ", "a", " ", "b", " ", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], "+", RowBox[List["Csch", "[", RowBox[List["c", " ", "z"]], "]"]]]], ")"]]]], RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", "b"]]]]]]]], " ", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["ArcSin", "[", SqrtBox[FractionBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Csch", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], RowBox[List["a", "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]]]], "]"]], ",", FractionBox[RowBox[List["a", "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]], RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", "b"]]]]]]], "]"]]]]]], ")"]], " ", RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]]]], ")"]], "/", RowBox[List["(", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["b", " ", RowBox[List["(", RowBox[List["\[ImaginaryI]", "+", RowBox[List["Csch", "[", RowBox[List["c", " ", "z"]], "]"]]]], ")"]]]], RowBox[List["a", "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]]]]]], ")"]]]]]], "-", RowBox[List["2", " ", "b", " ", SuperscriptBox[RowBox[List["Coth", "[", RowBox[List["c", " ", "z"]], "]"]], "2"], " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]]]]]], ")"]]]], ")"]], "/", RowBox[List["(", RowBox[List["3", " ", "c", " ", SqrtBox[SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]], "2"]], " ", SqrtBox[RowBox[List["1", "+", RowBox[List["Cosh", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]], " ", RowBox[List["(", RowBox[List["\[ImaginaryI]", "+", RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]], "2"]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mrow> <mrow> <mi> csch </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> csch </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </msqrt> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mi> csch </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mi> csch </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> csch </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </msqrt> <mo> &#8290; </mo> <mrow> <msup> <mi> sinh </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> coth </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <msqrt> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#8520; </mi> <mo> + </mo> <mrow> <mi> csch </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> a </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> </mrow> </mrow> </mfrac> </mrow> </msqrt> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> &#8520; </mi> <mo> + </mo> <mrow> <mi> csch </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> csch </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mi> a </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> </mrow> </mrow> </mfrac> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> + </mo> <mrow> <mi> csch </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mtext> </mtext> </mrow> </mrow> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> </mrow> </mrow> <mtext> </mtext> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> E </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> csch </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mi> a </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> </mrow> </mrow> </mfrac> </msqrt> <mo> ) </mo> </mrow> <mo> &#10072; </mo> <mfrac> <mrow> <mi> a </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> </mrow> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mtext> </mtext> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> + </mo> <mrow> <mi> csch </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mtext> </mtext> </mrow> </mrow> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mi> F </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> csch </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mi> a </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> </mrow> </mrow> </mfrac> </msqrt> <mo> ) </mo> </mrow> <mo> &#10072; </mo> <mfrac> <mrow> <mi> a </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> </mrow> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mtext> </mtext> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mi> csch </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mi> F </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#8520; </mi> <mo> + </mo> <mrow> <mi> csch </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> a </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> </mrow> </mrow> </mfrac> </mrow> </msqrt> <mo> ) </mo> </mrow> <mo> &#10072; </mo> <mfrac> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> <mtext> </mtext> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <msqrt> <mrow> <msup> <mi> cosh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#8520; </mi> <mo> + </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <csch /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <csch /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <cosh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <csch /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <csch /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <csch /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <sinh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> b </ci> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> a </ci> <apply> <sinh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <coth /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <plus /> <imaginaryi /> <apply> <csch /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <imaginaryi /> <apply> <csch /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <csch /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 8 </cn> <ci> a </ci> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <apply> <csch /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> a </ci> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> </apply> <apply> <ci> EllipticE </ci> <apply> <arcsin /> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <csch /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 8 </cn> <imaginaryi /> <ci> a </ci> <ci> b </ci> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <apply> <csch /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> EllipticF </ci> <apply> <arcsin /> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <csch /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <csch /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> EllipticF </ci> <apply> <arcsin /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <plus /> <imaginaryi /> <apply> <csch /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <imaginaryi /> <ci> a </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <sinh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> c </ci> <apply> <power /> <apply> <power /> <apply> <cosh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <cosh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <imaginaryi /> <apply> <sinh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> a </ci> <apply> <sinh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[RowBox[List["Csch", "[", RowBox[List["c_", " ", "z_"]], "]"]], " ", SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List["a_", "+", RowBox[List["b_", " ", RowBox[List["Csch", "[", RowBox[List["c_", " ", "z_"]], "]"]]]]]], ")"]], "3"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]], " ", SqrtBox[RowBox[List["1", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Csch", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]], " ", SqrtBox[RowBox[List["2", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["Csch", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]], " ", SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Csch", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]], "3"]], " ", SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]], "3"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["\[ImaginaryI]", "+", RowBox[List["Csch", "[", RowBox[List["c", " ", "z"]], "]"]]]], ")"]], " ", SqrtBox[FractionBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Csch", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], RowBox[List["a", "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["8", " ", "a", " ", RowBox[List["(", RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", "b"]]]], ")"]], " ", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], "+", RowBox[List["Csch", "[", RowBox[List["c", " ", "z"]], "]"]]]], ")"]]]], RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", "b"]]]]]]]], " ", RowBox[List["EllipticE", "[", RowBox[List[RowBox[List["ArcSin", "[", SqrtBox[FractionBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Csch", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], RowBox[List["a", "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]]]], "]"]], ",", FractionBox[RowBox[List["a", "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]], RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", "b"]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["3", " ", SuperscriptBox["a", "2"]]], "-", SuperscriptBox["b", "2"]]], ")"]], " ", SqrtBox[RowBox[List["2", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["Csch", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]], " ", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["ArcSin", "[", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["b", " ", RowBox[List["(", RowBox[List["\[ImaginaryI]", "+", RowBox[List["Csch", "[", RowBox[List["c", " ", "z"]], "]"]]]], ")"]]]], RowBox[List["a", "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]]]]]], "]"]], ",", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "b"]], RowBox[List["2", " ", "b"]]]]], "]"]]]], "-", RowBox[List["8", " ", "\[ImaginaryI]", " ", "a", " ", "b", " ", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], "+", RowBox[List["Csch", "[", RowBox[List["c", " ", "z"]], "]"]]]], ")"]]]], RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", "b"]]]]]]]], " ", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["ArcSin", "[", SqrtBox[FractionBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Csch", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], RowBox[List["a", "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]]]], "]"]], ",", FractionBox[RowBox[List["a", "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]], RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", "b"]]]]]]], "]"]]]]]], ")"]], " ", RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]]]], SqrtBox[RowBox[List["-", FractionBox[RowBox[List["b", " ", RowBox[List["(", RowBox[List["\[ImaginaryI]", "+", RowBox[List["Csch", "[", RowBox[List["c", " ", "z"]], "]"]]]], ")"]]]], RowBox[List["a", "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]]]]]]]]], "-", RowBox[List["2", " ", "b", " ", SuperscriptBox[RowBox[List["Coth", "[", RowBox[List["c", " ", "z"]], "]"]], "2"], " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]]]]]], ")"]]]], RowBox[List["3", " ", "c", " ", SqrtBox[SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]], "2"]], " ", SqrtBox[RowBox[List["1", "+", RowBox[List["Cosh", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]], " ", RowBox[List["(", RowBox[List["\[ImaginaryI]", "+", RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]], "2"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18