| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/01.23.21.0325.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Integrate[Sqrt[(a + b Csch[c z]^2)^3], z] == 
 (Sqrt[(a + b Csch[c z]^2)^3] Sinh[c z] 
   ((-b) Cosh[c z] Sqrt[-a + 2 b + a Cosh[2 c z]] + 
    Sqrt[2] Sqrt[b] (-3 a + b) ArcTanh[(Sqrt[2] Sqrt[b] Cosh[c z])/
       Sqrt[-a + 2 b + a Cosh[2 c z]]] Sinh[c z]^2 + 
    2 Sqrt[2] a^(3/2) Log[Sqrt[2] Sqrt[a] Cosh[c z] + 
       Sqrt[-a + 2 b + a Cosh[2 c z]]] Sinh[c z]^2))/
  (c (-a + 2 b + a Cosh[2 c z])^(3/2)) | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["Csch", "[", RowBox[List["c", " ", "z"]], "]"]], "2"]]]]], ")"]], "3"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List[SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["Csch", "[", RowBox[List["c", " ", "z"]], "]"]], "2"]]]]], ")"]], "3"]], " ", RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]], " ", SqrtBox[RowBox[List[RowBox[List["-", "a"]], "+", RowBox[List["2", " ", "b"]], "+", RowBox[List["a", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]]]]], "+", RowBox[List[SqrtBox["2"], " ", SqrtBox["b"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "3"]], " ", "a"]], "+", "b"]], ")"]], " ", RowBox[List["ArcTanh", "[", FractionBox[RowBox[List[SqrtBox["2"], " ", SqrtBox["b"], " ", RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]]]], SqrtBox[RowBox[List[RowBox[List["-", "a"]], "+", RowBox[List["2", " ", "b"]], "+", RowBox[List["a", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]]]], "]"]], " ", SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]], "2"]]], "+", RowBox[List["2", " ", SqrtBox["2"], " ", SuperscriptBox["a", RowBox[List["3", "/", "2"]]], " ", RowBox[List["Log", "[", RowBox[List[RowBox[List[SqrtBox["2"], " ", SqrtBox["a"], " ", RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]]]], "+", SqrtBox[RowBox[List[RowBox[List["-", "a"]], "+", RowBox[List["2", " ", "b"]], "+", RowBox[List["a", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]]]]], "]"]], " ", SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]], "2"]]]]], ")"]]]], ")"]], "/", RowBox[List["(", RowBox[List["c", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", RowBox[List["2", " ", "b"]], "+", RowBox[List["a", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]], ")"]], RowBox[List["3", "/", "2"]]]]], ")"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mo> ∫ </mo>  <mrow>  <msqrt>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> csch </mi>  <mn> 2 </mn>  </msup>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 3 </mn>  </msup>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mo> ⅆ </mo>  <mi> z </mi>  </mrow>  </mrow>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <msqrt>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> csch </mi>  <mn> 2 </mn>  </msup>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mi> a </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 3 </mn>  </msup>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mi> sinh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mn> 2 </mn>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <msqrt>  <mn> 2 </mn>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mi> a </mi>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mi> cosh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <msqrt>  <mrow>  <mrow>  <mrow>  <mi> cosh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> - </mo>  <mi> a </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  </mrow>  </mrow>  </msqrt>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> sinh </mi>  <mn> 2 </mn>  </msup>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> a </mi>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <msqrt>  <mn> 2 </mn>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mi> b </mi>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> b </mi>  <mo> - </mo>  <mrow>  <mn> 3 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> tanh </mi>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ( </mo>  <mfrac>  <mrow>  <msqrt>  <mn> 2 </mn>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mi> b </mi>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mi> cosh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <msqrt>  <mrow>  <mrow>  <mrow>  <mi> cosh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> - </mo>  <mi> a </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  </mrow>  </mrow>  </msqrt>  </mfrac>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> sinh </mi>  <mn> 2 </mn>  </msup>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mi> cosh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mrow>  <mrow>  <mi> cosh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> - </mo>  <mi> a </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  </mrow>  </mrow>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> / </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mi> cosh </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> - </mo>  <mi> a </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <int />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <ci> a </ci>  <apply>  <times />  <ci> b </ci>  <apply>  <power />  <apply>  <csch />  <apply>  <times />  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 3 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <apply>  <power />  <apply>  <csch />  <apply>  <times />  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <ci> a </ci>  </apply>  <cn type='integer'> 3 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <sinh />  <apply>  <times />  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <ln />  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <cosh />  <apply>  <times />  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <apply>  <cosh />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <sinh />  <apply>  <times />  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <ci> a </ci>  <cn type='rational'> 3 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> b </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <ci> b </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 3 </cn>  <ci> a </ci>  </apply>  </apply>  </apply>  <apply>  <arctanh />  <apply>  <times />  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> b </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <cosh />  <apply>  <times />  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <apply>  <cosh />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <sinh />  <apply>  <times />  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> b </ci>  <apply>  <cosh />  <apply>  <times />  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <apply>  <cosh />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <ci> c </ci>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <apply>  <cosh />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  </apply>  </apply>  <cn type='rational'> 3 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List["a_", "+", RowBox[List["b_", " ", SuperscriptBox[RowBox[List["Csch", "[", RowBox[List["c_", " ", "z_"]], "]"]], "2"]]]]], ")"]], "3"]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["Csch", "[", RowBox[List["c", " ", "z"]], "]"]], "2"]]]]], ")"]], "3"]], " ", RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]], " ", SqrtBox[RowBox[List[RowBox[List["-", "a"]], "+", RowBox[List["2", " ", "b"]], "+", RowBox[List["a", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]]]]], "+", RowBox[List[SqrtBox["2"], " ", SqrtBox["b"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "3"]], " ", "a"]], "+", "b"]], ")"]], " ", RowBox[List["ArcTanh", "[", FractionBox[RowBox[List[SqrtBox["2"], " ", SqrtBox["b"], " ", RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]]]], SqrtBox[RowBox[List[RowBox[List["-", "a"]], "+", RowBox[List["2", " ", "b"]], "+", RowBox[List["a", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]]]], "]"]], " ", SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]], "2"]]], "+", RowBox[List["2", " ", SqrtBox["2"], " ", SuperscriptBox["a", RowBox[List["3", "/", "2"]]], " ", RowBox[List["Log", "[", RowBox[List[RowBox[List[SqrtBox["2"], " ", SqrtBox["a"], " ", RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]]]], "+", SqrtBox[RowBox[List[RowBox[List["-", "a"]], "+", RowBox[List["2", " ", "b"]], "+", RowBox[List["a", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]]]]], "]"]], " ", SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]], "2"]]]]], ")"]]]], RowBox[List["c", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", RowBox[List["2", " ", "b"]], "+", RowBox[List["a", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]], ")"]], RowBox[List["3", "/", "2"]]]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |