Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Csch






Mathematica Notation

Traditional Notation









Elementary Functions > Csch[z] > Integration > Indefinite integration > Involving functions of the direct function and hyperbolic functions > Involving algebraic functions of the direct function and hyperbolic functions > Involving coth > Involving coth(c z)(a+b csch2(c z))beta





http://functions.wolfram.com/01.23.21.0458.01









  


  










Input Form





Integrate[Coth[z]/(a + b Csch[z]^2)^(1/4), z] == (2 Hypergeometric2F1[1/4, 1/4, 5/4, -((a Sinh[z]^2)/b)] (1 + (a Sinh[z]^2)/b)^(1/4))/(a + b Csch[z]^2)^(1/4)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List["Coth", "[", "z", "]"]], SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["Csch", "[", "z", "]"]], "2"]]]]], ")"]], RowBox[List["1", "/", "4"]]]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", FractionBox[RowBox[List["2", " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox["1", "4"], ",", FractionBox["1", "4"], ",", FractionBox["5", "4"], ",", RowBox[List["-", FractionBox[RowBox[List["a", " ", SuperscriptBox[RowBox[List["Sinh", "[", "z", "]"]], "2"]]], "b"]]]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List["a", " ", SuperscriptBox[RowBox[List["Sinh", "[", "z", "]"]], "2"]]], "b"]]], ")"]], RowBox[List["1", "/", "4"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["Csch", "[", "z", "]"]], "2"]]]]], ")"]], RowBox[List["1", "/", "4"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mfrac> <mrow> <mi> coth </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mroot> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> csch </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> a </mi> </mrow> <mn> 4 </mn> </mroot> </mfrac> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ; </mo> <mfrac> <mn> 5 </mn> <mn> 4 </mn> </mfrac> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> sinh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mi> b </mi> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;1&quot;, &quot;4&quot;], Hypergeometric2F1], &quot;,&quot;, TagBox[FractionBox[&quot;1&quot;, &quot;4&quot;], Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[TagBox[TagBox[FractionBox[&quot;5&quot;, &quot;4&quot;], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, FractionBox[RowBox[List[&quot;a&quot;, &quot; &quot;, RowBox[List[SuperscriptBox[&quot;sinh&quot;, &quot;2&quot;], &quot;(&quot;, &quot;z&quot;, &quot;)&quot;]]]], &quot;b&quot;]]], Hypergeometric2F1]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> <mo> &#8290; </mo> <mroot> <mrow> <mfrac> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> sinh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mi> b </mi> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mroot> </mrow> <mroot> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> csch </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> a </mi> </mrow> <mn> 4 </mn> </mroot> </mfrac> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <coth /> <ci> z </ci> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <csch /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <ci> a </ci> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Hypergeometric2F1 </ci> <cn type='rational'> 1 <sep /> 4 </cn> <cn type='rational'> 1 <sep /> 4 </cn> <cn type='rational'> 5 <sep /> 4 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <apply> <power /> <apply> <sinh /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <power /> <apply> <sinh /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <csch /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <ci> a </ci> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List["Coth", "[", "z_", "]"]], SuperscriptBox[RowBox[List["(", RowBox[List["a_", "+", RowBox[List["b_", " ", SuperscriptBox[RowBox[List["Csch", "[", "z_", "]"]], "2"]]]]], ")"]], RowBox[List["1", "/", "4"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["2", " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox["1", "4"], ",", FractionBox["1", "4"], ",", FractionBox["5", "4"], ",", RowBox[List["-", FractionBox[RowBox[List["a", " ", SuperscriptBox[RowBox[List["Sinh", "[", "z", "]"]], "2"]]], "b"]]]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List["a", " ", SuperscriptBox[RowBox[List["Sinh", "[", "z", "]"]], "2"]]], "b"]]], ")"]], RowBox[List["1", "/", "4"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["Csch", "[", "z", "]"]], "2"]]]]], ")"]], RowBox[List["1", "/", "4"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18