|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.23.23.0001.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Sum[Csch[k z]/k, {k, 1, Infinity}] == -(Log[2]/3) + z/12 -
(1/6) Log[(1 - \[Kappa]^2)/\[Kappa]] /;
\[Kappa] == Sqrt[InverseEllipticNomeQ[E^(-z)]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], FractionBox[RowBox[List["Csch", "[", RowBox[List["k", " ", "z"]], "]"]], "k"]]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["Log", "[", "2", "]"]], "3"]]], "+", FractionBox["z", "12"], "-", RowBox[List[FractionBox["1", "6"], " ", RowBox[List["Log", "[", FractionBox[RowBox[List["1", "-", SuperscriptBox["\[Kappa]", "2"]]], "\[Kappa]"], "]"]]]]]]]], "/;", RowBox[List["\[Kappa]", "\[Equal]", SqrtBox[RowBox[List["InverseEllipticNomeQ", "[", SuperscriptBox["\[ExponentialE]", RowBox[List["-", "z"]]], "]"]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> ∞ </mi> </munderover> <mfrac> <mrow> <mi> csch </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> k </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </mfrac> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mi> z </mi> <mn> 12 </mn> </mfrac> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 6 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> κ </mi> <mn> 2 </mn> </msup> </mrow> <mi> κ </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mfrac> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> <mn> 3 </mn> </mfrac> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> κ </mi> <mo> ⩵ </mo> <msqrt> <mrow> <msup> <semantics> <mi> q </mi> <annotation-xml encoding='MathML-Content'> <ci> EllipticNomeQ </ci> </annotation-xml> </semantics> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msup> <mi> ⅇ </mi> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msup> <mo> ) </mo> </mrow> </msqrt> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <csch /> <apply> <times /> <ci> k </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <ci> k </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <power /> <cn type='integer'> 12 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='rational'> 1 <sep /> 6 </cn> <apply> <ln /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> κ </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <ci> κ </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ln /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <eq /> <ci> κ </ci> <apply> <power /> <apply> <ci> InverseEllipticNomeQ </ci> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k_", "=", "1"]], "\[Infinity]"], FractionBox[RowBox[List["Csch", "[", RowBox[List["k_", " ", "z_"]], "]"]], "k_"]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox[RowBox[List["Log", "[", "2", "]"]], "3"]]], "+", FractionBox["z", "12"], "-", RowBox[List[FractionBox["1", "6"], " ", RowBox[List["Log", "[", FractionBox[RowBox[List["1", "-", SuperscriptBox["\[Kappa]", "2"]]], "\[Kappa]"], "]"]]]]]], "/;", RowBox[List["\[Kappa]", "\[Equal]", SqrtBox[RowBox[List["InverseEllipticNomeQ", "[", SuperscriptBox["\[ExponentialE]", RowBox[List["-", "z"]]], "]"]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|