|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.03.03.0163.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
E^((19 Pi I)/12) == (Sqrt[3] - 1)/(2 Sqrt[2]) - (I (1 + Sqrt[3]))/(2 Sqrt[2])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["19", "\[Pi]", " ", "\[ImaginaryI]"]], "12"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[SqrtBox["3"], "-", "1"]], RowBox[List["2", " ", SqrtBox["2"]]]], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["1", "+", SqrtBox["3"]]], ")"]]]], RowBox[List["2", " ", SqrtBox["2"]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <msup> <mi> ⅇ </mi> <mfrac> <mrow> <mn> 19 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> <mn> 12 </mn> </mfrac> </msup> <mo> ⩵ </mo> <mrow> <mfrac> <mrow> <msqrt> <mn> 3 </mn> </msqrt> <mo> - </mo> <mn> 1 </mn> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mn> 2 </mn> </msqrt> </mrow> </mfrac> <mo> - </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mn> 2 </mn> </msqrt> </mrow> </mfrac> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 19 </cn> <pi /> <imaginaryi /> <apply> <power /> <cn type='integer'> 12 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["19", " ", "\[Pi]", " ", "\[ImaginaryI]"]], "12"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SqrtBox["3"], "-", "1"]], RowBox[List["2", " ", SqrtBox["2"]]]], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["1", "+", SqrtBox["3"]]], ")"]]]], RowBox[List["2", " ", SqrtBox["2"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|