|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.03.06.0016.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
E^(I x y) == Sqrt[Pi/(2 x)] Sum[I^l BesselJ[l + 1/2, x] LegendreP[l, y],
{l, 0, Infinity}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "x", " ", "y"]]], "\[Equal]", RowBox[List[SqrtBox[FractionBox["\[Pi]", RowBox[List["2", " ", "x"]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["l", "=", "0"]], "\[Infinity]"], RowBox[List[SuperscriptBox["\[ImaginaryI]", "l"], " ", RowBox[List["BesselJ", "[", RowBox[List[RowBox[List["l", "+", FractionBox["1", "2"]]], ",", "x"]], "]"]], " ", RowBox[List["LegendreP", "[", RowBox[List["l", ",", "y"]], "]"]]]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> x </mi> <mo> ⁢ </mo> <mi> y </mi> </mrow> </msup> <mo> = </mo> <mrow> <msqrt> <mfrac> <mi> π </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> x </mi> </mrow> </mfrac> </msqrt> <mo> ⁢ </mo> <mrow> <munderover> <mo movablelimits='true'> ∑ </mo> <mrow> <mi> l </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mrow> <msup> <mi> ⅈ </mi> <mi> l </mi> </msup> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> l </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msub> <mi> J </mi> <mrow> <mi> l </mi> <mo> + </mo> <mrow> <mn> 1 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </mrow> </msub> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msub> <mi> P </mi> <mi> l </mi> </msub> <mo> ( </mo> <mi> y </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Set </ci> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <ci> x </ci> <ci> y </ci> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <times /> <pi /> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> x </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <sum /> <bvar> <ci> l </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <apply> <power /> <imaginaryi /> <ci> l </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> l </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> BesselJ </ci> <apply> <plus /> <ci> l </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> x </ci> </apply> <apply> <apply> <ci> Subscript </ci> <ci> P </ci> <ci> l </ci> </apply> <ci> y </ci> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "x_", " ", "y_"]]], "]"]], "\[RuleDelayed]", RowBox[List[SqrtBox[FractionBox["\[Pi]", RowBox[List["2", " ", "x"]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["l", "=", "0"]], "\[Infinity]"], RowBox[List[SuperscriptBox["\[ImaginaryI]", "l"], " ", RowBox[List["BesselJ", "[", RowBox[List[RowBox[List["l", "+", FractionBox["1", "2"]]], ",", "x"]], "]"]], " ", RowBox[List["LegendreP", "[", RowBox[List["l", ",", "y"]], "]"]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|