|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.03.10.0006.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
E^Sqrt[z] ==
1 + 2 (Sqrt[z]/(2 - Sqrt[z] + ContinueFraction[{z/(4 k^2 - 1), 2},
{k, 1, Infinity}]))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[SuperscriptBox["\[ExponentialE]", SqrtBox["z"]], "\[Equal]", RowBox[List["1", "+", RowBox[List["2", RowBox[List[SqrtBox["z"], "/", RowBox[List["(", RowBox[List["2", "-", SqrtBox["z"], "+", RowBox[List["ContinueFraction", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["z", "/", RowBox[List["(", RowBox[List[RowBox[List["4", RowBox[List["k", "^", "2"]]]], "-", "1"]], ")"]]]], ",", "2"]], "}"]], ",", RowBox[List["{", RowBox[List["k", ",", "1", ",", "\[Infinity]"]], "}"]]]], "]"]]]], ")"]]]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <msup> <mi> ⅇ </mi> <msqrt> <mi> z </mi> </msqrt> </msup> <mo> ⩵ </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mrow> <mn> 2 </mn> <mo> - </mo> <msqrt> <mi> z </mi> </msqrt> <mo> + </mo> <msubsup> <mrow> <msub> <mi> Κ </mi> <mi> k </mi> </msub> <mo> ( </mo> <mrow> <mfrac> <mi> z </mi> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msup> <mi> k </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> , </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 1 </mn> <mi> ∞ </mi> </msubsup> </mrow> </mfrac> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <power /> <exponentiale /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <apply> <apply> <ci> Subscript </ci> <ci> Κ </ci> <ci> k </ci> </apply> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> k </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <infinity /> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", SuperscriptBox["\[ExponentialE]", SqrtBox["z_"]], "]"]], "\[RuleDelayed]", RowBox[List["1", "+", FractionBox[RowBox[List["2", " ", SqrtBox["z"]]], RowBox[List["2", "-", SqrtBox["z"], "+", RowBox[List["ContinueFraction", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["z", RowBox[List[RowBox[List["4", " ", SuperscriptBox["k", "2"]]], "-", "1"]]], ",", "2"]], "}"]], ",", RowBox[List["{", RowBox[List["k", ",", "1", ",", "\[Infinity]"]], "}"]]]], "]"]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|