|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.03.16.0041.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
E^(I n ArcSec[z]) == ChebyshevT[n, 1/z] + I Sqrt[1 - 1/z^2]
ChebyshevU[-1 + n, 1/z]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "n", " ", RowBox[List["ArcSec", "[", "z", "]"]]]]], "\[Equal]", RowBox[List[RowBox[List["ChebyshevT", "[", RowBox[List["n", ",", FractionBox["1", "z"]]], "]"]], "+", RowBox[List["\[ImaginaryI]", SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["z", "2"]]]]], " ", RowBox[List["ChebyshevU", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "n"]], ",", FractionBox["1", "z"]]], "]"]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> n </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sec </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⩵ </mo> <mrow> <mrow> <msub> <mi> T </mi> <mi> n </mi> </msub> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mi> z </mi> </mfrac> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <msub> <mi> U </mi> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mi> z </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <ci> n </ci> <apply> <arcsec /> <ci> z </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <ci> ChebyshevT </ci> <ci> n </ci> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> ChebyshevU </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "n_", " ", RowBox[List["ArcSec", "[", "z_", "]"]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["ChebyshevT", "[", RowBox[List["n", ",", FractionBox["1", "z"]]], "]"]], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["z", "2"]]]]], " ", RowBox[List["ChebyshevU", "[", RowBox[List[RowBox[List[RowBox[List["-", "1"]], "+", "n"]], ",", FractionBox["1", "z"]]], "]"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|