|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.03.16.0064.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
E^(((I n)/2) ArcCsc[z]) ==
ChebyshevT[n, (1/Sqrt[2]) Sqrt[1 + Sqrt[1 - 1/z^2]]] +
((I z)/Sqrt[2]) Sqrt[1/z^2] Sqrt[1 - Sqrt[1 - 1/z^2]]
ChebyshevU[n - 1, (1/Sqrt[2]) Sqrt[1 + Sqrt[1 - 1/z^2]]] /;
Element[n, Integers] && n > 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", "n"]], "2"], " ", RowBox[List["ArcCsc", "[", "z", "]"]]]]], "\[Equal]", RowBox[List[RowBox[List["ChebyshevT", "[", RowBox[List["n", ",", RowBox[List[FractionBox["1", SqrtBox["2"]], SqrtBox[RowBox[List["1", "+", SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["z", "2"]]]]]]]]]]]], "]"]], "+", RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], SqrtBox["2"]], SqrtBox[FractionBox["1", SuperscriptBox["z", "2"]]], SqrtBox[RowBox[List["1", "-", SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["z", "2"]]]]]]]], " ", RowBox[List["ChebyshevU", "[", RowBox[List[RowBox[List["n", "-", "1"]], ",", RowBox[List[FractionBox["1", SqrtBox["2"]], SqrtBox[RowBox[List["1", "+", SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["z", "2"]]]]]]]]]]]], "]"]]]]]]]], "/;", RowBox[List[RowBox[List["Element", "[", RowBox[List["n", ",", "Integers"]], "]"]], "\[And]", RowBox[List["n", ">", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <msup> <mi> csc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⩵ </mo> <mrow> <mrow> <msub> <mi> T </mi> <mi> n </mi> </msub> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> <mo> ⁢ </mo> <msqrt> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> z </mi> <mtext> </mtext> </mrow> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> <mo> ⁢ </mo> <msqrt> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <msub> <mi> U </mi> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> <mo> ⁢ </mo> <msqrt> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <imaginaryi /> <ci> n </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <arccsc /> <ci> z </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <ci> ChebyshevT </ci> <ci> n </ci> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <imaginaryi /> <ci> z </ci> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> ChebyshevU </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <apply> <ci> SuperPlus </ci> <ci> ℕ </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "n_"]], ")"]], " ", RowBox[List["ArcCsc", "[", "z_", "]"]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["ChebyshevT", "[", RowBox[List["n", ",", FractionBox[SqrtBox[RowBox[List["1", "+", SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["z", "2"]]]]]]]], SqrtBox["2"]]]], "]"]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "z"]], ")"]], " ", SqrtBox[FractionBox["1", SuperscriptBox["z", "2"]]], " ", SqrtBox[RowBox[List["1", "-", SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["z", "2"]]]]]]]], " ", RowBox[List["ChebyshevU", "[", RowBox[List[RowBox[List["n", "-", "1"]], ",", FractionBox[SqrtBox[RowBox[List["1", "+", SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["z", "2"]]]]]]]], SqrtBox["2"]]]], "]"]]]], SqrtBox["2"]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", ">", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|