Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Exp






Mathematica Notation

Traditional Notation









Elementary Functions > Exp[z] > Transformations > Some functions of arguments





http://functions.wolfram.com/01.03.16.0114.01









  


  










Input Form





E^(a (b z^n)^(1/n)) == Sum[((a (b z^n)^(1/n))^i/i!) HypergeometricPFQ[{1}, {(i + 1)/n, (i + 2)/n, \[Ellipsis], (i + n)/n}, (a^n b z^n)/n^n], {i, 0, n - 1}] /; Element[n, Integers] && n > 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["a", " ", SuperscriptBox[RowBox[List["(", RowBox[List["b", " ", SuperscriptBox["z", "n"]]], ")"]], RowBox[List["1", "/", "n"]]]]]], "\[Equal]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["i", "=", "0"]], RowBox[List["n", "-", "1"]]], RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["a", " ", SuperscriptBox[RowBox[List["(", RowBox[List["b", " ", SuperscriptBox["z", "n"]]], ")"]], RowBox[List["1", "/", "n"]]]]], ")"]], "i"], RowBox[List["i", "!"]]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", "1", "}"]], ",", RowBox[List["{", RowBox[List[FractionBox[RowBox[List["i", "+", "1"]], "n"], ",", FractionBox[RowBox[List["i", "+", "2"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List["i", "+", "n"]], "n"]]], "}"]], ",", FractionBox[RowBox[List[SuperscriptBox["a", "n"], " ", "b", " ", SuperscriptBox["z", "n"]]], SuperscriptBox["n", "n"]]]], " ", "]"]]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", ">", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> n </mi> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 1 </mn> <mo> / </mo> <mi> n </mi> </mrow> </msup> </mrow> </msup> <mo> &#63449; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> i </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> n </mi> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 1 </mn> <mo> / </mo> <mi> n </mi> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mi> i </mi> </msup> <mtext> </mtext> </mrow> <mrow> <mi> i </mi> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 1 </mn> </msub> <msub> <mi> F </mi> <mi> n </mi> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> ; </mo> <mrow> <mfrac> <mrow> <mi> i </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </mfrac> <mo> , </mo> <mfrac> <mrow> <mi> i </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mi> n </mi> </mfrac> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <mfrac> <mrow> <mi> i </mi> <mo> + </mo> <mi> n </mi> </mrow> <mi> n </mi> </mfrac> </mrow> <mo> ; </mo> <mfrac> <mrow> <msup> <mi> a </mi> <mi> n </mi> </msup> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> n </mi> </msup> </mrow> <msup> <mi> n </mi> <mi> n </mi> </msup> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;1&quot;], SubscriptBox[&quot;F&quot;, &quot;n&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[TagBox[&quot;1&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[&quot;i&quot;, &quot;+&quot;, &quot;1&quot;]], &quot;n&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[FractionBox[RowBox[List[&quot;i&quot;, &quot;+&quot;, &quot;2&quot;]], &quot;n&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;\[Ellipsis]&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[FractionBox[RowBox[List[&quot;i&quot;, &quot;+&quot;, &quot;n&quot;]], &quot;n&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[FractionBox[RowBox[List[SuperscriptBox[&quot;a&quot;, &quot;n&quot;], &quot; &quot;, &quot;b&quot;, &quot; &quot;, SuperscriptBox[&quot;z&quot;, &quot;n&quot;]]], SuperscriptBox[&quot;n&quot;, &quot;n&quot;]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <power /> <exponentiale /> <apply> <times /> <ci> a </ci> <apply> <power /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> z </ci> <ci> n </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> i </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <times /> <ci> a </ci> <apply> <power /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> z </ci> <ci> n </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <ci> i </ci> </apply> <apply> <power /> <apply> <factorial /> <ci> i </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='integer'> 1 </cn> </list> <list> <apply> <times /> <apply> <plus /> <ci> i </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> i </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <ci> &#8230; </ci> <apply> <times /> <apply> <plus /> <ci> i </ci> <ci> n </ci> </apply> <apply> <power /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> </list> <apply> <times /> <apply> <power /> <ci> a </ci> <ci> n </ci> </apply> <ci> b </ci> <apply> <power /> <ci> z </ci> <ci> n </ci> </apply> <apply> <power /> <apply> <power /> <ci> n </ci> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Date Added to functions.wolfram.com (modification date)





2007-05-02