|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.03.21.0443.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[6^z/(a 4^z + b 9^z), z] ==
(b Log[((-2^z) Sqrt[a] + 3^z Sqrt[-b])/(2^z Sqrt[a] + 3^z Sqrt[-b])])/
(Sqrt[a] (-b)^(3/2) Log[9/4])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox[SuperscriptBox["6", "z"], RowBox[List[RowBox[List["a", " ", SuperscriptBox["4", "z"]]], "+", RowBox[List["b", " ", SuperscriptBox["9", "z"]]]]]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", FractionBox[RowBox[List["b", " ", RowBox[List["Log", "[", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["2", "z"]]], " ", SqrtBox["a"]]], "+", RowBox[List[SuperscriptBox["3", "z"], " ", SqrtBox[RowBox[List["-", "b"]]]]]]], RowBox[List[RowBox[List[SuperscriptBox["2", "z"], " ", SqrtBox["a"]]], "+", RowBox[List[SuperscriptBox["3", "z"], " ", SqrtBox[RowBox[List["-", "b"]]]]]]]], "]"]]]], RowBox[List[SqrtBox["a"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "b"]], ")"]], RowBox[List["3", "/", "2"]]], " ", RowBox[List["Log", "[", FractionBox["9", "4"], "]"]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> ∫ </mo> <mrow> <mfrac> <msup> <mn> 6 </mn> <mi> z </mi> </msup> <mrow> <mrow> <msup> <mn> 4 </mn> <mi> z </mi> </msup> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <msup> <mn> 9 </mn> <mi> z </mi> </msup> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mfrac> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mrow> <msup> <mn> 3 </mn> <mi> z </mi> </msup> <mo> ⁢ </mo> <msqrt> <mrow> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> </mrow> <mo> - </mo> <mrow> <msup> <mn> 2 </mn> <mi> z </mi> </msup> <mo> ⁢ </mo> <msqrt> <mi> a </mi> </msqrt> </mrow> </mrow> <mrow> <mrow> <msup> <mn> 2 </mn> <mi> z </mi> </msup> <mo> ⁢ </mo> <msqrt> <mi> a </mi> </msqrt> </mrow> <mo> + </mo> <mrow> <msup> <mn> 3 </mn> <mi> z </mi> </msup> <mo> ⁢ </mo> <msqrt> <mrow> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> </mrow> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mrow> <msqrt> <mi> a </mi> </msqrt> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mn> 9 </mn> <mn> 4 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <cn type='integer'> 6 </cn> <ci> z </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 4 </cn> <ci> z </ci> </apply> <ci> a </ci> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 9 </cn> <ci> z </ci> </apply> <ci> b </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <ln /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 3 </cn> <ci> z </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 3 </cn> <ci> z </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <ln /> <cn type='rational'> 9 <sep /> 4 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox[SuperscriptBox["6", "z_"], RowBox[List[RowBox[List["a_", " ", SuperscriptBox["4", "z_"]]], "+", RowBox[List["b_", " ", SuperscriptBox["9", "z_"]]]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["b", " ", RowBox[List["Log", "[", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["2", "z"]]], " ", SqrtBox["a"]]], "+", RowBox[List[SuperscriptBox["3", "z"], " ", SqrtBox[RowBox[List["-", "b"]]]]]]], RowBox[List[RowBox[List[SuperscriptBox["2", "z"], " ", SqrtBox["a"]]], "+", RowBox[List[SuperscriptBox["3", "z"], " ", SqrtBox[RowBox[List["-", "b"]]]]]]]], "]"]]]], RowBox[List[SqrtBox["a"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "b"]], ")"]], RowBox[List["3", "/", "2"]]], " ", RowBox[List["Log", "[", FractionBox["9", "4"], "]"]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|