|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.03.21.0465.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[Sqrt[(a + b E^(c z))^3], z] == (1/(3 c (a + b E^(c z))^(3/2)))
(2 Sqrt[(a + b E^(c z))^3] (Sqrt[a + b E^(c z)] (4 a + b E^(c z)) -
3 a^(3/2) ArcTanh[Sqrt[a + b E^(c z)]/Sqrt[a]]))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]]]], ")"]], "3"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["3", " ", "c", " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]]]], ")"]], RowBox[List["3", "/", "2"]]]]]], RowBox[List["(", RowBox[List["2", " ", SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]]]], ")"]], "3"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["4", " ", "a"]], "+", RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]]]], ")"]]]], "-", RowBox[List["3", " ", SuperscriptBox["a", RowBox[List["3", "/", "2"]]], " ", RowBox[List["ArcTanh", "[", FractionBox[SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]]]]], SqrtBox["a"]], "]"]]]]]], ")"]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> ∫ </mo> <mrow> <msqrt> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </msqrt> <mtext> </mtext> </mrow> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <msup> <mi> a </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> </mrow> </msqrt> <msqrt> <mi> a </mi> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> c </ci> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> </apply> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <ci> a </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <arctanh /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List["a_", "+", RowBox[List["b_", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c_", " ", "z_"]]]]]]], ")"]], "3"]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["2", " ", SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]]]], ")"]], "3"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["4", " ", "a"]], "+", RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]]]], ")"]]]], "-", RowBox[List["3", " ", SuperscriptBox["a", RowBox[List["3", "/", "2"]]], " ", RowBox[List["ArcTanh", "[", FractionBox[SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]]]]], SqrtBox["a"]], "]"]]]]]], ")"]]]], RowBox[List["3", " ", "c", " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]]]]]], ")"]], RowBox[List["3", "/", "2"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|