Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Exp






Mathematica Notation

Traditional Notation









Elementary Functions > Exp[z] > Integration > Indefinite integration > Involving functions of the direct function and a power function > Involving products of powers of the direct function and a power function > Involving product of power of the direct function, the direct function and a power function > Involving zneb zr+d z(ec zr+g)nu





http://functions.wolfram.com/01.03.21.0684.01









  


  










Input Form





Integrate[z^n E^(b Sqrt[z] + d z) (E^(c Sqrt[z] + g))^\[Nu], z] == (2^(-1 - 2 n) E^((-c) Sqrt[z] \[Nu] - (b + c \[Nu])^2/(4 d)) (E^(g + c Sqrt[z]))^\[Nu] Sum[(-1)^(-h + k) 4^k (b + c \[Nu])^(-h - k + 2 n) (b + 2 d Sqrt[z] + c \[Nu])^(h + k) (-((b + 2 d Sqrt[z] + c \[Nu])^2/d))^((1/2) (-1 - h - k)) Binomial[k, h] Binomial[n, k] ((b + c \[Nu]) (b + 2 d Sqrt[z] + c \[Nu]) Gamma[(1/2) (1 + h + k), -((b + 2 d Sqrt[z] + c \[Nu])^2/(4 d))] + 2 d Sqrt[-((b + 2 d Sqrt[z] + c \[Nu])^2/d)] Gamma[(1/2) (2 + h + k), -((b + 2 d Sqrt[z] + c \[Nu])^2/(4 d))]), {k, 0, n}, {h, 0, k}])/ d^(2 (1 + n)) /; Element[n, Integers] && n >= 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["z", "n"], SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["b", " ", SqrtBox["z"]]], "+", RowBox[List["d", " ", "z"]]]]], SuperscriptBox[RowBox[List["(", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["c", " ", SqrtBox["z"]]], "+", "g"]]], ")"]], "\[Nu]"], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", "n"]]]]], " ", SuperscriptBox["d", RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", "c"]], " ", SqrtBox["z"], " ", "\[Nu]"]], "-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", RowBox[List["c", " ", "\[Nu]"]]]], ")"]], "2"], RowBox[List["4", " ", "d"]]]]]], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox["\[ExponentialE]", RowBox[List["g", "+", RowBox[List["c", " ", SqrtBox["z"]]]]]], ")"]], "\[Nu]"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["h", "=", "0"]], "k"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["-", "h"]], "+", "k"]]], " ", SuperscriptBox["4", "k"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", RowBox[List["c", " ", "\[Nu]"]]]], ")"]], RowBox[List[RowBox[List["-", "h"]], "-", "k", "+", RowBox[List["2", " ", "n"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", RowBox[List["2", " ", "d", " ", SqrtBox["z"]]], "+", RowBox[List["c", " ", "\[Nu]"]]]], ")"]], RowBox[List["h", "+", "k"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", RowBox[List["2", " ", "d", " ", SqrtBox["z"]]], "+", RowBox[List["c", " ", "\[Nu]"]]]], ")"]], "2"], "d"]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "h", "-", "k"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["k", ",", "h"]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["b", "+", RowBox[List["c", " ", "\[Nu]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["2", " ", "d", " ", SqrtBox["z"]]], "+", RowBox[List["c", " ", "\[Nu]"]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", "h", "+", "k"]], ")"]]]], ",", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", RowBox[List["2", " ", "d", " ", SqrtBox["z"]]], "+", RowBox[List["c", " ", "\[Nu]"]]]], ")"]], "2"], RowBox[List["4", " ", "d"]]]]]]], "]"]]]], "+", RowBox[List["2", " ", "d", " ", SqrtBox[RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", RowBox[List["2", " ", "d", " ", SqrtBox["z"]]], "+", RowBox[List["c", " ", "\[Nu]"]]]], ")"]], "2"], "d"]]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", "h", "+", "k"]], ")"]]]], ",", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", RowBox[List["2", " ", "d", " ", SqrtBox["z"]]], "+", RowBox[List["c", " ", "\[Nu]"]]]], ")"]], "2"], RowBox[List["4", " ", "d"]]]]]]], "]"]]]]]], ")"]]]]]]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mrow> <msup> <mi> z </mi> <mi> n </mi> </msup> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> + </mo> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> + </mo> <mi> g </mi> </mrow> </msup> <mo> ) </mo> </mrow> <mi> &#957; </mi> </msup> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> d </mi> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> d </mi> </mrow> </mfrac> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> + </mo> <mi> g </mi> </mrow> </msup> <mo> ) </mo> </mrow> <mi> &#957; </mi> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> h </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> k </mi> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> - </mo> <mi> h </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mn> 4 </mn> <mi> k </mi> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> h </mi> </mrow> <mo> - </mo> <mi> k </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> d </mi> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> h </mi> <mo> + </mo> <mi> k </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> d </mi> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mi> d </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> h </mi> </mrow> <mo> - </mo> <mi> k </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> <mtr> <mtd> <mi> h </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;k&quot;, Identity]], List[TagBox[&quot;h&quot;, Identity]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> n </mi> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;n&quot;, Identity]], List[TagBox[&quot;k&quot;, Identity]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> d </mi> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> h </mi> <mo> + </mo> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> d </mi> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> d </mi> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> d </mi> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mi> d </mi> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <mi> d </mi> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> h </mi> <mo> + </mo> <mi> k </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> d </mi> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> d </mi> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <ci> z </ci> <ci> n </ci> </apply> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> b </ci> </apply> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> c </ci> </apply> <ci> g </ci> </apply> </apply> <ci> &#957; </ci> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> d </ci> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> c </ci> <ci> &#957; </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> d </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> &#957; </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> c </ci> </apply> <ci> g </ci> </apply> </apply> <ci> &#957; </ci> </apply> <apply> <sum /> <bvar> <ci> h </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> k </ci> </uplimit> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> h </ci> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <ci> k </ci> </apply> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> c </ci> <ci> &#957; </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> h </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> c </ci> <ci> &#957; </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <ci> h </ci> <ci> k </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> c </ci> <ci> &#957; </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> d </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> h </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Binomial </ci> <ci> k </ci> <ci> h </ci> </apply> <apply> <ci> Binomial </ci> <ci> n </ci> <ci> k </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> c </ci> <ci> &#957; </ci> </apply> </apply> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> c </ci> <ci> &#957; </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <ci> h </ci> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> c </ci> <ci> &#957; </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> d </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> c </ci> <ci> &#957; </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> d </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> d </ci> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <ci> h </ci> <ci> k </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> c </ci> <ci> &#957; </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> d </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <ci> &#8469; </ci> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["z_", "n_"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["b_", " ", SqrtBox["z_"]]], "+", RowBox[List["d_", " ", "z_"]]]]], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["c_", " ", SqrtBox["z_"]]], "+", "g_"]]], ")"]], "\[Nu]_"]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", "n"]]]]], " ", SuperscriptBox["d", RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", "c"]], " ", SqrtBox["z"], " ", "\[Nu]"]], "-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", RowBox[List["c", " ", "\[Nu]"]]]], ")"]], "2"], RowBox[List["4", " ", "d"]]]]]], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox["\[ExponentialE]", RowBox[List["g", "+", RowBox[List["c", " ", SqrtBox["z"]]]]]], ")"]], "\[Nu]"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["h", "=", "0"]], "k"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["-", "h"]], "+", "k"]]], " ", SuperscriptBox["4", "k"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", RowBox[List["c", " ", "\[Nu]"]]]], ")"]], RowBox[List[RowBox[List["-", "h"]], "-", "k", "+", RowBox[List["2", " ", "n"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", RowBox[List["2", " ", "d", " ", SqrtBox["z"]]], "+", RowBox[List["c", " ", "\[Nu]"]]]], ")"]], RowBox[List["h", "+", "k"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", RowBox[List["2", " ", "d", " ", SqrtBox["z"]]], "+", RowBox[List["c", " ", "\[Nu]"]]]], ")"]], "2"], "d"]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "h", "-", "k"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["k", ",", "h"]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["b", "+", RowBox[List["c", " ", "\[Nu]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["2", " ", "d", " ", SqrtBox["z"]]], "+", RowBox[List["c", " ", "\[Nu]"]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", "h", "+", "k"]], ")"]]]], ",", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", RowBox[List["2", " ", "d", " ", SqrtBox["z"]]], "+", RowBox[List["c", " ", "\[Nu]"]]]], ")"]], "2"], RowBox[List["4", " ", "d"]]]]]]], "]"]]]], "+", RowBox[List["2", " ", "d", " ", SqrtBox[RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", RowBox[List["2", " ", "d", " ", SqrtBox["z"]]], "+", RowBox[List["c", " ", "\[Nu]"]]]], ")"]], "2"], "d"]]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", "h", "+", "k"]], ")"]]]], ",", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", RowBox[List["2", " ", "d", " ", SqrtBox["z"]]], "+", RowBox[List["c", " ", "\[Nu]"]]]], ")"]], "2"], RowBox[List["4", " ", "d"]]]]]]], "]"]]]]]], ")"]]]]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18