Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Exp






Mathematica Notation

Traditional Notation









Elementary Functions > Exp[z] > Integration > Indefinite integration > Involving functions of the direct function and a power function > Involving products of powers of the direct function and a power function > Involving product of powers of two direct functions and a power function > Involving zalpha-1(eb zr+e)mu (ec zr+g)nu





http://functions.wolfram.com/01.03.21.0743.01









  


  










Input Form





Integrate[z^(\[Alpha] - 1) (E^(b z^r + e))^\[Mu] (E^(c z^r + g))^\[Nu], z] == (-(1/r)) (((E^(e + b z^r))^\[Mu] (E^(g + c z^r))^\[Nu] z^\[Alpha] Gamma[\[Alpha]/r, (-z^r) (b \[Mu] + c \[Nu])])/ (E^(z^r (b \[Mu] + c \[Nu])) ((-z^r) (b \[Mu] + c \[Nu]))^(\[Alpha]/r)))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["z", RowBox[List["\[Alpha]", "-", "1"]]], SuperscriptBox[RowBox[List["(", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["b", " ", SuperscriptBox["z", "r"]]], "+", "e"]]], ")"]], "\[Mu]"], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["c", " ", SuperscriptBox["z", "r"]]], "+", "g"]]], ")"]], "\[Nu]"], " ", RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox["1", "r"]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", SuperscriptBox["z", "r"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "\[Mu]"]], "+", RowBox[List["c", " ", "\[Nu]"]]]], ")"]]]]], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox["\[ExponentialE]", RowBox[List["e", "+", RowBox[List["b", " ", SuperscriptBox["z", "r"]]]]]], ")"]], "\[Mu]"], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox["\[ExponentialE]", RowBox[List["g", "+", RowBox[List["c", " ", SuperscriptBox["z", "r"]]]]]], ")"]], "\[Nu]"], " ", SuperscriptBox["z", "\[Alpha]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox["z", "r"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "\[Mu]"]], "+", RowBox[List["c", " ", "\[Nu]"]]]], ")"]]]], ")"]], RowBox[List["-", FractionBox["\[Alpha]", "r"]]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["\[Alpha]", "r"], ",", RowBox[List[RowBox[List["-", SuperscriptBox["z", "r"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "\[Mu]"]], "+", RowBox[List["c", " ", "\[Nu]"]]]], ")"]]]]]], "]"]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mrow> <msup> <mi> z </mi> <mrow> <mi> &#945; </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> + </mo> <mi> e </mi> </mrow> </msup> <mo> ) </mo> </mrow> <mi> &#956; </mi> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mi> c </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> + </mo> <mi> g </mi> </mrow> </msup> <mo> ) </mo> </mrow> <mi> &#957; </mi> </msup> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> + </mo> <mi> e </mi> </mrow> </msup> <mo> ) </mo> </mrow> <mi> &#956; </mi> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mi> c </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> + </mo> <mi> g </mi> </mrow> </msup> <mo> ) </mo> </mrow> <mi> &#957; </mi> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> &#945; </mi> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mfrac> <mi> &#945; </mi> <mi> r </mi> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mi> &#945; </mi> <mi> r </mi> </mfrac> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mi> r </mi> </mfrac> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> &#945; </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> <ci> e </ci> </apply> </apply> <ci> &#956; </ci> </apply> <apply> <power /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <ci> c </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> <ci> g </ci> </apply> </apply> <ci> &#957; </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> b </ci> <ci> &#956; </ci> </apply> <apply> <times /> <ci> c </ci> <ci> &#957; </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> <ci> e </ci> </apply> </apply> <ci> &#956; </ci> </apply> <apply> <power /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <ci> c </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> <ci> g </ci> </apply> </apply> <ci> &#957; </ci> </apply> <apply> <power /> <ci> z </ci> <ci> &#945; </ci> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> b </ci> <ci> &#956; </ci> </apply> <apply> <times /> <ci> c </ci> <ci> &#957; </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> &#945; </ci> <apply> <power /> <ci> r </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <ci> &#945; </ci> <apply> <power /> <ci> r </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> b </ci> <ci> &#956; </ci> </apply> <apply> <times /> <ci> c </ci> <ci> &#957; </ci> </apply> </apply> </apply> </apply> <apply> <power /> <ci> r </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["z_", RowBox[List["\[Alpha]_", "-", "1"]]], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["b_", " ", SuperscriptBox["z_", "r_"]]], "+", "e_"]]], ")"]], "\[Mu]_"], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["c_", " ", SuperscriptBox["z_", "r_"]]], "+", "g_"]]], ")"]], "\[Nu]_"]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", SuperscriptBox["z", "r"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "\[Mu]"]], "+", RowBox[List["c", " ", "\[Nu]"]]]], ")"]]]]], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox["\[ExponentialE]", RowBox[List["e", "+", RowBox[List["b", " ", SuperscriptBox["z", "r"]]]]]], ")"]], "\[Mu]"], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox["\[ExponentialE]", RowBox[List["g", "+", RowBox[List["c", " ", SuperscriptBox["z", "r"]]]]]], ")"]], "\[Nu]"], " ", SuperscriptBox["z", "\[Alpha]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox["z", "r"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "\[Mu]"]], "+", RowBox[List["c", " ", "\[Nu]"]]]], ")"]]]], ")"]], RowBox[List["-", FractionBox["\[Alpha]", "r"]]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["\[Alpha]", "r"], ",", RowBox[List[RowBox[List["-", SuperscriptBox["z", "r"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "\[Mu]"]], "+", RowBox[List["c", " ", "\[Nu]"]]]], ")"]]]]]], "]"]]]], "r"]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18