Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Exp






Mathematica Notation

Traditional Notation









Elementary Functions > Exp[z] > Integration > Indefinite integration > Involving functions of the direct function and a power function > Involving products of powers of the direct function and a power function > Involving product of powers of two direct functions and a power function > Involving zalpha-1(eb zr+e)mu (ec zr+g)nu





http://functions.wolfram.com/01.03.21.0748.01









  


  










Input Form





Integrate[z^n (E^(b Sqrt[z] + e))^\[Mu] (E^(c Sqrt[z] + g))^\[Nu], z] == (-2 (E^(e + b Sqrt[z]))^\[Mu] (E^(g + c Sqrt[z]))^\[Nu] (-(ExpIntegralEi[Sqrt[z] (b \[Mu] + c \[Nu])]/(-2 (1 + n))!) + E^(Sqrt[z] (b \[Mu] + c \[Nu])) Sum[((-Sqrt[z]) (b \[Mu] + c \[Nu]))^j/ Pochhammer[2 (1 + n), j - 2 n - 1], {j, 0, 2 n + 1}] - E^(Sqrt[z] (b \[Mu] + c \[Nu])) Sum[((-Sqrt[z]) (b \[Mu] + c \[Nu]))^j/ Pochhammer[2 (1 + n), j - 2 n - 1], {j, 2 (1 + n), -1}]))/ (E^(Sqrt[z] (b \[Mu] + c \[Nu])) (b \[Mu] + c \[Nu])^(2 (1 + n))) /; Element[n, Integers]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["z", "n"], SuperscriptBox[RowBox[List["(", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["b", " ", SqrtBox["z"]]], "+", "e"]]], ")"]], "\[Mu]"], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["c", " ", SqrtBox["z"]]], "+", "g"]]], ")"]], "\[Nu]"], " ", RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["-", "2"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", SqrtBox["z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "\[Mu]"]], "+", RowBox[List["c", " ", "\[Nu]"]]]], ")"]]]]], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox["\[ExponentialE]", RowBox[List["e", "+", RowBox[List["b", " ", SqrtBox["z"]]]]]], ")"]], "\[Mu]"], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox["\[ExponentialE]", RowBox[List["g", "+", RowBox[List["c", " ", SqrtBox["z"]]]]]], ")"]], "\[Nu]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["b", " ", "\[Mu]"]], "+", RowBox[List["c", " ", "\[Nu]"]]]], ")"]], RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[" ", RowBox[List["ExpIntegralEi", "[", RowBox[List[SqrtBox["z"], " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "\[Mu]"]], "+", RowBox[List["c", " ", "\[Nu]"]]]], ")"]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]], ")"]], "!"]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[SqrtBox["z"], " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "\[Mu]"]], "+", RowBox[List["c", " ", "\[Nu]"]]]], ")"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List[RowBox[List["2", "n"]], "+", "1"]]], FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", SqrtBox["z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "\[Mu]"]], "+", RowBox[List["c", " ", "\[Nu]"]]]], ")"]]]], ")"]], "j"], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]], ",", RowBox[List["j", "-", RowBox[List["2", "n"]], "-", "1"]]]], "]"]]]]]]], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[SqrtBox["z"], " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "\[Mu]"]], "+", RowBox[List["c", " ", "\[Nu]"]]]], ")"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", RowBox[List["2", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]]]], RowBox[List["-", "1"]]], FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", SqrtBox["z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "\[Mu]"]], "+", RowBox[List["c", " ", "\[Nu]"]]]], ")"]]]], ")"]], "j"], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]], ",", RowBox[List["j", "-", RowBox[List["2", "n"]], "-", "1"]]]], "]"]]]]]]]]], ")"]]]]]], "/;", RowBox[List["n", "\[Element]", "Integers"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mrow> <msup> <mi> z </mi> <mi> n </mi> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> + </mo> <mi> e </mi> </mrow> </msup> <mo> ) </mo> </mrow> <mi> &#956; </mi> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> + </mo> <mi> g </mi> </mrow> </msup> <mo> ) </mo> </mrow> <mi> &#957; </mi> </msup> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> + </mo> <mi> e </mi> </mrow> </msup> <mo> ) </mo> </mrow> <mi> &#956; </mi> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> + </mo> <mi> g </mi> </mrow> </msup> <mo> ) </mo> </mrow> <mi> &#957; </mi> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mtext> </mtext> <mrow> <mi> Ei </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> </mrow> <mo> + </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </munderover> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msup> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> j </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[&quot;n&quot;, &quot;+&quot;, &quot;1&quot;]], &quot;)&quot;]]]], &quot;)&quot;]], RowBox[List[&quot;j&quot;, &quot;-&quot;, RowBox[List[&quot;2&quot;, &quot;n&quot;]], &quot;-&quot;, &quot;1&quot;]]], Pochhammer] </annotation> </semantics> </mfrac> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> &#956; </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msup> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> j </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[&quot;n&quot;, &quot;+&quot;, &quot;1&quot;]], &quot;)&quot;]]]], &quot;)&quot;]], RowBox[List[&quot;j&quot;, &quot;-&quot;, RowBox[List[&quot;2&quot;, &quot;n&quot;]], &quot;-&quot;, &quot;1&quot;]]], Pochhammer] </annotation> </semantics> </mfrac> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[Integers]] </annotation> </semantics> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <ci> z </ci> <ci> n </ci> </apply> <apply> <power /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> b </ci> </apply> <ci> e </ci> </apply> </apply> <ci> &#956; </ci> </apply> <apply> <power /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> c </ci> </apply> <ci> g </ci> </apply> </apply> <ci> &#957; </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> b </ci> <ci> &#956; </ci> </apply> <apply> <times /> <ci> c </ci> <ci> &#957; </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> b </ci> </apply> <ci> e </ci> </apply> </apply> <ci> &#956; </ci> </apply> <apply> <power /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> c </ci> </apply> <ci> g </ci> </apply> </apply> <ci> &#957; </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> b </ci> <ci> &#956; </ci> </apply> <apply> <times /> <ci> c </ci> <ci> &#957; </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> ExpIntegralEi </ci> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <ci> b </ci> <ci> &#956; </ci> </apply> <apply> <times /> <ci> c </ci> <ci> &#957; </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <factorial /> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <ci> b </ci> <ci> &#956; </ci> </apply> <apply> <times /> <ci> c </ci> <ci> &#957; </ci> </apply> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> 1 </cn> </apply> </uplimit> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> b </ci> <ci> &#956; </ci> </apply> <apply> <times /> <ci> c </ci> <ci> &#957; </ci> </apply> </apply> </apply> <ci> j </ci> </apply> <apply> <power /> <apply> <ci> Pochhammer </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <ci> b </ci> <ci> &#956; </ci> </apply> <apply> <times /> <ci> c </ci> <ci> &#957; </ci> </apply> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> </lowlimit> <uplimit> <cn type='integer'> -1 </cn> </uplimit> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> b </ci> <ci> &#956; </ci> </apply> <apply> <times /> <ci> c </ci> <ci> &#957; </ci> </apply> </apply> </apply> <ci> j </ci> </apply> <apply> <power /> <apply> <ci> Pochhammer </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <integers /> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["z_", "n_"], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["b_", " ", SqrtBox["z_"]]], "+", "e_"]]], ")"]], "\[Mu]_"], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["c_", " ", SqrtBox["z_"]]], "+", "g_"]]], ")"]], "\[Nu]_"]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", SqrtBox["z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "\[Mu]"]], "+", RowBox[List["c", " ", "\[Nu]"]]]], ")"]]]]], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox["\[ExponentialE]", RowBox[List["e", "+", RowBox[List["b", " ", SqrtBox["z"]]]]]], ")"]], "\[Mu]"], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox["\[ExponentialE]", RowBox[List["g", "+", RowBox[List["c", " ", SqrtBox["z"]]]]]], ")"]], "\[Nu]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["b", " ", "\[Mu]"]], "+", RowBox[List["c", " ", "\[Nu]"]]]], ")"]], RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["ExpIntegralEi", "[", RowBox[List[SqrtBox["z"], " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "\[Mu]"]], "+", RowBox[List["c", " ", "\[Nu]"]]]], ")"]]]], "]"]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]], ")"]], "!"]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[SqrtBox["z"], " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "\[Mu]"]], "+", RowBox[List["c", " ", "\[Nu]"]]]], ")"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List[RowBox[List["2", " ", "n"]], "+", "1"]]], FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", SqrtBox["z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "\[Mu]"]], "+", RowBox[List["c", " ", "\[Nu]"]]]], ")"]]]], ")"]], "j"], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]], ",", RowBox[List["j", "-", RowBox[List["2", " ", "n"]], "-", "1"]]]], "]"]]]]]]], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[SqrtBox["z"], " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "\[Mu]"]], "+", RowBox[List["c", " ", "\[Nu]"]]]], ")"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]]]], RowBox[List["-", "1"]]], FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", SqrtBox["z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "\[Mu]"]], "+", RowBox[List["c", " ", "\[Nu]"]]]], ")"]]]], ")"]], "j"], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]], ",", RowBox[List["j", "-", RowBox[List["2", " ", "n"]], "-", "1"]]]], "]"]]]]]]]]], ")"]]]], "/;", RowBox[List["n", "\[Element]", "Integers"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18