|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.03.21.0032.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[t^k/E^(b t), {t, a, Infinity}] == b^(-k - 1) Gamma[k + 1, a b] /;
a > 0 && Re[b] > 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubsuperscriptBox["\[Integral]", "a", "\[Infinity]"], RowBox[List[SuperscriptBox["t", "k"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "b"]], " ", "t"]]], RowBox[List["\[DifferentialD]", "t"]]]]]], "\[Equal]", RowBox[List[SuperscriptBox["b", RowBox[List[RowBox[List["-", "k"]], "-", "1"]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["k", "+", "1"]], ",", RowBox[List["a", " ", "b"]]]], "]"]]]]]], "/;", RowBox[List[RowBox[List["a", ">", "0"]], "&&", RowBox[List[RowBox[List["Re", "[", "b", "]"]], ">", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <mo> ∫ </mo> <mi> a </mi> <mi> ∞ </mi> </msubsup> <mrow> <msup> <mi> t </mi> <mi> k </mi> </msup> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> ⁢ </mo> <mi> t </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> t </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <msup> <mi> b </mi> <mrow> <mrow> <mo> - </mo> <mi> k </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> a </mi> <mo> > </mo> <mn> 0 </mn> </mrow> <mo> ∧ </mo> <mrow> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> b </mi> <mo> ) </mo> </mrow> <mo> > </mo> <mn> 0 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <int /> <bvar> <ci> t </ci> </bvar> <lowlimit> <ci> a </ci> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <power /> <ci> t </ci> <ci> k </ci> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <ci> t </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <ci> b </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <ci> a </ci> <ci> b </ci> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <gt /> <ci> a </ci> <cn type='integer'> 0 </cn> </apply> <apply> <gt /> <apply> <real /> <ci> b </ci> </apply> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubsuperscriptBox["\[Integral]", "a_", "\[Infinity]"], RowBox[List[RowBox[List[SuperscriptBox["t_", "k_"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "b_"]], " ", "t_"]]]]], RowBox[List["\[DifferentialD]", "t_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SuperscriptBox["b", RowBox[List[RowBox[List["-", "k"]], "-", "1"]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["k", "+", "1"]], ",", RowBox[List["a", " ", "b"]]]], "]"]]]], "/;", RowBox[List[RowBox[List["a", ">", "0"]], "&&", RowBox[List[RowBox[List["Re", "[", "b", "]"]], ">", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|