|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.03.23.0011.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Sum[((-1)^(k - 1) E^(k w))/k^2, {k, 1, Infinity}] == -PolyLog[2, -E^w] /;
Re[w] <= 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["k", "-", "1"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["k", " ", "w"]]]]], SuperscriptBox["k", "2"]]]], "\[Equal]", RowBox[List["-", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", "w"]]]]], "]"]]]]]], "/;", RowBox[List[RowBox[List["Re", "[", "w", "]"]], "\[LessEqual]", "0"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> ∞ </mi> </munderover> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> k </mi> <mo> ⁢ </mo> <mi> w </mi> </mrow> </msup> </mrow> <msup> <mi> k </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> <mo> ⩵ </mo> <mrow> <mo> - </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <mo> - </mo> <msup> <mi> ⅇ </mi> <mi> w </mi> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> w </mi> <mo> ) </mo> </mrow> <mo> ≤ </mo> <mn> 0 </mn> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> k </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <ci> k </ci> <ci> w </ci> </apply> </apply> <apply> <power /> <apply> <power /> <ci> k </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyLog </ci> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <ci> w </ci> </apply> </apply> </apply> </apply> </apply> <apply> <leq /> <apply> <real /> <ci> w </ci> </apply> <cn type='integer'> 0 </cn> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k_", "=", "1"]], "\[Infinity]"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["k_", "-", "1"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["k_", " ", "w_"]]]]], SuperscriptBox["k_", "2"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", "w"]]]]], "]"]]]], "/;", RowBox[List[RowBox[List["Re", "[", "w", "]"]], "\[LessEqual]", "0"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|