Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Exp






Mathematica Notation

Traditional Notation









Elementary Functions > Exp[z] > Representations through more general functions > Through Meijer G > Generalized cases involving regularized incomplete gamma functions Q





http://functions.wolfram.com/01.03.26.0203.01









  


  










Input Form





E^((Pi I a)/2 - z) GammaRegularized[a, -z] - E^(-((Pi I a)/2) + z) GammaRegularized[a, z] == ((I Sin[a Pi])/Pi^(3/2)) MeijerG[{{(1 + a)/2}, {}}, {{0, 1/2, (1 + a)/2}, {}}, Sqrt[-z^2]/2, 1/2] /; Inequality[0, Less, Arg[z], LessEqual, Pi]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox[RowBox[List["\[Pi]", " ", "\[ImaginaryI]", " ", "a"]], "2"], "-", "z"]]], " ", RowBox[List["GammaRegularized", "[", RowBox[List["a", ",", RowBox[List["-", "z"]]]], "]"]]]], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["\[Pi]", " ", "\[ImaginaryI]", " ", "a"]], "2"]]], "+", "z"]]], " ", RowBox[List["GammaRegularized", "[", RowBox[List["a", ",", "z"]], "]"]]]]]], "\[Equal]", RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["Sin", "[", RowBox[List["a", " ", "\[Pi]"]], "]"]]]], SuperscriptBox["\[Pi]", RowBox[List["3", "/", "2"]]]], RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", FractionBox[RowBox[List["1", "+", "a"]], "2"], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", FractionBox["1", "2"], ",", FractionBox[RowBox[List["1", "+", "a"]], "2"]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", FractionBox[SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]], "2"], ",", FractionBox["1", "2"]]], "]"]]]]]], "/;", RowBox[List["0", "<", RowBox[List["Arg", "[", "z", "]"]], "\[LessEqual]", "\[Pi]"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <semantics> <mi> Q </mi> <annotation-xml encoding='MathML-Content'> <ci> GammaRegularized </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <semantics> <mi> Q </mi> <annotation-xml encoding='MathML-Content'> <ci> GammaRegularized </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> &#63449; </mo> <mrow> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <msup> <mi> &#960; </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 1 </mn> <mo> , </mo> <mn> 3 </mn> </mrow> <mrow> <mn> 3 </mn> <mo> , </mo> <mn> 1 </mn> </mrow> </msubsup> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <msqrt> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> &#10072; </mo> <mtable> <mtr> <mtd> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 0 </mn> <mo> , </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox[&quot;G&quot;, MeijerG], RowBox[List[&quot;1&quot;, &quot;,&quot;, &quot;3&quot;]], RowBox[List[&quot;3&quot;, &quot;,&quot;, &quot;1&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[RowBox[List[TagBox[FractionBox[SqrtBox[RowBox[List[&quot;-&quot;, SuperscriptBox[&quot;z&quot;, &quot;2&quot;]]]], &quot;2&quot;], MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;1&quot;, &quot;2&quot;], MeijerG, Rule[Editable, True]]]], MeijerG], &quot;\[VerticalSeparator]&quot;, GridBox[List[List[TagBox[FractionBox[RowBox[List[&quot;a&quot;, &quot;+&quot;, &quot;1&quot;]], &quot;2&quot;], MeijerG, Rule[Editable, True]]], List[RowBox[List[TagBox[&quot;0&quot;, MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;1&quot;, &quot;2&quot;], MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[RowBox[List[&quot;a&quot;, &quot;+&quot;, &quot;1&quot;]], &quot;2&quot;], MeijerG, Rule[Editable, True]]]]]]]]], &quot;)&quot;]]]], MeijerG, Rule[Editable, False]] </annotation> </semantics> </mrow> </mrow> <mo> /; </mo> <mrow> <mn> 0 </mn> <mo> &lt; </mo> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8804; </mo> <mi> &#960; </mi> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <pi /> <imaginaryi /> <ci> a </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> <apply> <ci> GammaRegularized </ci> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <pi /> <imaginaryi /> <ci> a </ci> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <ci> GammaRegularized </ci> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <imaginaryi /> <apply> <sin /> <apply> <times /> <ci> a </ci> <pi /> </apply> </apply> <apply> <power /> <apply> <power /> <pi /> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> MeijerG </ci> <list> <list> <apply> <times /> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </list> <list /> </list> <list> <list> <cn type='integer'> 0 </cn> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </list> <list /> </list> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <ci> Inequality </ci> <cn type='integer'> 0 </cn> <lt /> <apply> <arg /> <ci> z </ci> </apply> <leq /> <pi /> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox[RowBox[List["\[Pi]", " ", "\[ImaginaryI]", " ", "a_"]], "2"], "-", "z_"]]], " ", RowBox[List["GammaRegularized", "[", RowBox[List["a_", ",", RowBox[List["-", "z_"]]]], "]"]]]], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", RowBox[List["(", RowBox[List["\[Pi]", " ", "\[ImaginaryI]", " ", "a_"]], ")"]]]], "+", "z_"]]], " ", RowBox[List["GammaRegularized", "[", RowBox[List["a_", ",", "z_"]], "]"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Sin", "[", RowBox[List["a", " ", "\[Pi]"]], "]"]]]], ")"]], " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", FractionBox[RowBox[List["1", "+", "a"]], "2"], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", FractionBox["1", "2"], ",", FractionBox[RowBox[List["1", "+", "a"]], "2"]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", FractionBox[SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]], "2"], ",", FractionBox["1", "2"]]], "]"]]]], SuperscriptBox["\[Pi]", RowBox[List["3", "/", "2"]]]], "/;", RowBox[List["0", "<", RowBox[List["Arg", "[", "z", "]"]], "\[LessEqual]", "\[Pi]"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02