Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Exp






Mathematica Notation

Traditional Notation









Elementary Functions > Exp[z] > Representations through more general functions > Through Meijer G > Generalized cases involving Bi'





http://functions.wolfram.com/01.03.26.0211.01









  


  










Input Form





Exp[(2 z^(3/2))/3] AiryBiPrime[z] == (-(1/2^(1/3))) 3^(1/6) Sqrt[Pi] MeijerG[{{}, {-(1/3), 7/6}}, {{0, 4/3}, {-(1/3)}}, (2 2^(1/3) z)/3^(2/3), 2/3]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["Exp", "[", FractionBox[RowBox[List["2", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "3"], "]"]], " ", RowBox[List["AiryBiPrime", "[", "z", "]"]]]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox["1", SuperscriptBox["2", RowBox[List["1", "/", "3"]]]]]], SuperscriptBox["3", RowBox[List["1", "/", "6"]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["1", "3"]]], ",", FractionBox["7", "6"]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", FractionBox["4", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List["-", FractionBox["1", "3"]]], "}"]]]], "}"]], ",", FractionBox[RowBox[List["2", " ", SuperscriptBox["2", RowBox[List["1", "/", "3"]]], " ", "z"]], SuperscriptBox["3", RowBox[List["2", "/", "3"]]]], ",", FractionBox["2", "3"]]], "]"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <mi> &#8519; </mi> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mn> 3 </mn> </mfrac> </msup> <mo> &#8290; </mo> <mrow> <msup> <mi> Bi </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> &#63449; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mroot> <mn> 3 </mn> <mn> 6 </mn> </mroot> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> <mtext> </mtext> </mrow> <mroot> <mn> 2 </mn> <mn> 3 </mn> </mroot> </mfrac> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 3 </mn> </mrow> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 0 </mn> </mrow> </msubsup> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mroot> <mn> 2 </mn> <mn> 3 </mn> </mroot> <mo> &#8290; </mo> <mi> z </mi> </mrow> <msup> <mn> 3 </mn> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mfrac> <mo> , </mo> <mfrac> <mn> 2 </mn> <mn> 3 </mn> </mfrac> </mrow> <mo> &#10072; </mo> <mtable> <mtr> <mtd> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> </mrow> <mo> , </mo> <mfrac> <mn> 7 </mn> <mn> 6 </mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 0 </mn> <mo> , </mo> <mfrac> <mn> 4 </mn> <mn> 3 </mn> </mfrac> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox[&quot;G&quot;, MeijerG], RowBox[List[&quot;2&quot;, &quot;,&quot;, &quot;3&quot;]], RowBox[List[&quot;2&quot;, &quot;,&quot;, &quot;0&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[&quot;2&quot;, &quot; &quot;, RadicalBox[&quot;2&quot;, &quot;3&quot;], &quot; &quot;, &quot;z&quot;]], SuperscriptBox[&quot;3&quot;, RowBox[List[&quot;2&quot;, &quot;/&quot;, &quot;3&quot;]]]], MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;2&quot;, &quot;3&quot;], MeijerG, Rule[Editable, True]]]], MeijerG], &quot;\[VerticalSeparator]&quot;, GridBox[List[List[RowBox[List[TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;1&quot;, &quot;3&quot;]]], MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;7&quot;, &quot;6&quot;], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox[&quot;0&quot;, MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;4&quot;, &quot;3&quot;], MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;1&quot;, &quot;3&quot;]]], MeijerG, Rule[Editable, True]]]]]]]]], &quot;)&quot;]]]], MeijerG, Rule[Editable, False]] </annotation> </semantics> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> AiryBiPrime </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 6 </cn> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> MeijerG </ci> <list> <list /> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <cn type='rational'> 7 <sep /> 6 </cn> </list> </list> <list> <list> <cn type='integer'> 0 </cn> <cn type='rational'> 4 <sep /> 3 </cn> </list> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </list> </list> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <ci> z </ci> <apply> <power /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["2", " ", SuperscriptBox["z_", RowBox[List["3", "/", "2"]]]]], "3"]], " ", RowBox[List["AiryBiPrime", "[", "z_", "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["3", RowBox[List["1", "/", "6"]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["1", "3"]]], ",", FractionBox["7", "6"]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", FractionBox["4", "3"]]], "}"]], ",", RowBox[List["{", RowBox[List["-", FractionBox["1", "3"]]], "}"]]]], "}"]], ",", FractionBox[RowBox[List["2", " ", SuperscriptBox["2", RowBox[List["1", "/", "3"]]], " ", "z"]], SuperscriptBox["3", RowBox[List["2", "/", "3"]]]], ",", FractionBox["2", "3"]]], "]"]]]], SuperscriptBox["2", RowBox[List["1", "/", "3"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02