Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Exp






Mathematica Notation

Traditional Notation









Elementary Functions > Exp[z] > Representations through more general functions > Through Meijer G > Generalized cases involving parabolic cylinder function D





http://functions.wolfram.com/01.03.26.0214.01









  


  










Input Form





E^z^2 ParabolicCylinderD[\[Nu], -2 z] == ((2^((1 - \[Nu])/2) Pi^(3/2))/Gamma[-\[Nu]]) MeijerG[{{1 + \[Nu]/2}, {1/8, 5/8}}, {{0, 1/2}, {1/8, 5/8}}, Sqrt[2] z, 1/2]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", SuperscriptBox["z", "2"]], RowBox[List["ParabolicCylinderD", "[", RowBox[List["\[Nu]", ",", RowBox[List[RowBox[List["-", "2"]], "z"]]]], "]"]]]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", FractionBox[RowBox[List["1", "-", "\[Nu]"]], "2"]], " ", SuperscriptBox["\[Pi]", RowBox[List["3", "/", "2"]]]]], RowBox[List["Gamma", "[", RowBox[List["-", "\[Nu]"]], "]"]]], RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["1", "+", FractionBox["\[Nu]", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "8"], ",", FractionBox["5", "8"]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", FractionBox["1", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "8"], ",", FractionBox["5", "8"]]], "}"]]]], "}"]], ",", RowBox[List[SqrtBox["2"], "z"]], ",", FractionBox["1", "2"]]], "]"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <mi> &#8519; </mi> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </msup> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> D </mi> <annotation encoding='Mathematica'> TagBox[&quot;D&quot;, ParabolicCylinderD] </annotation> </semantics> <mi> &#957; </mi> </msub> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#63449; </mo> <mrow> <mfrac> <mrow> <msup> <mn> 2 </mn> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#957; </mi> </mrow> <mn> 2 </mn> </mfrac> </msup> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 3 </mn> <mo> , </mo> <mn> 4 </mn> </mrow> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 1 </mn> </mrow> </msubsup> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> , </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> &#10072; </mo> <mtable> <mtr> <mtd> <mrow> <mrow> <mfrac> <mi> &#957; </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 5 </mn> <mn> 8 </mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 0 </mn> <mo> , </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 5 </mn> <mn> 8 </mn> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox[&quot;G&quot;, MeijerG], RowBox[List[&quot;3&quot;, &quot;,&quot;, &quot;4&quot;]], RowBox[List[&quot;2&quot;, &quot;,&quot;, &quot;1&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[RowBox[List[TagBox[RowBox[List[SqrtBox[&quot;2&quot;], &quot;z&quot;]], MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;1&quot;, &quot;2&quot;], MeijerG, Rule[Editable, True]]]], MeijerG], &quot;\[VerticalSeparator]&quot;, GridBox[List[List[RowBox[List[TagBox[RowBox[List[FractionBox[&quot;\[Nu]&quot;, &quot;2&quot;], &quot;+&quot;, &quot;1&quot;]], MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;1&quot;, &quot;8&quot;], MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;5&quot;, &quot;8&quot;], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox[&quot;0&quot;, MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;1&quot;, &quot;2&quot;], MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;1&quot;, &quot;8&quot;], MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;5&quot;, &quot;8&quot;], MeijerG, Rule[Editable, True]]]]]]]]], &quot;)&quot;]]]], MeijerG, Rule[Editable, False]] </annotation> </semantics> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> ParabolicCylinderD </ci> <ci> &#957; </ci> <apply> <times /> <cn type='integer'> -2 </cn> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> MeijerG </ci> <list> <list> <apply> <plus /> <apply> <times /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </list> <list> <cn type='rational'> 1 <sep /> 8 </cn> <cn type='rational'> 5 <sep /> 8 </cn> </list> </list> <list> <list> <cn type='integer'> 0 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </list> <list> <cn type='rational'> 1 <sep /> 8 </cn> <cn type='rational'> 5 <sep /> 8 </cn> </list> </list> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SuperscriptBox["\[ExponentialE]", SuperscriptBox["z_", "2"]], " ", RowBox[List["ParabolicCylinderD", "[", RowBox[List["\[Nu]_", ",", RowBox[List[RowBox[List["-", "2"]], " ", "z_"]]]], "]"]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", FractionBox[RowBox[List["1", "-", "\[Nu]"]], "2"]], " ", SuperscriptBox["\[Pi]", RowBox[List["3", "/", "2"]]]]], ")"]], " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["1", "+", FractionBox["\[Nu]", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "8"], ",", FractionBox["5", "8"]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", FractionBox["1", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "8"], ",", FractionBox["5", "8"]]], "}"]]]], "}"]], ",", RowBox[List[SqrtBox["2"], " ", "z"]], ",", FractionBox["1", "2"]]], "]"]]]], RowBox[List["Gamma", "[", RowBox[List["-", "\[Nu]"]], "]"]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02