Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Power






Mathematica Notation

Traditional Notation









Elementary Functions > Power[z,a] > Series representations > Generalized power series > Expansions of (1+z)a at z==0 > Expansions of (1+Sumk=1infinityck zk)a at z==0





http://functions.wolfram.com/01.02.06.0063.01









  


  










Input Form





(1 + Sum[Subscript[c, k] z^k, {k, 1, Infinity}])^n == Sum[Subscript[p, n, k] z^k, {k, 0, Infinity}] /; Subscript[p, j, 0] == 1 && Subscript[p, j, k] == (1/k) Sum[(j m - k + m) Subscript[c, m] Subscript[p, j, k - m], {m, 1, k}] && Element[k, Integers] && k > 0 && Element[n, Integers] && n > 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], RowBox[List[SubscriptBox["c", "k"], " ", SuperscriptBox["z", "k"]]]]]]], ")"]], "n"], "\[Equal]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[SubscriptBox["p", RowBox[List["n", ",", "k"]]], SuperscriptBox["z", "k"]]]]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["p", RowBox[List["j", ",", "0"]]], "\[Equal]", "1"]], "\[And]", RowBox[List[SubscriptBox["p", RowBox[List["j", ",", "k"]]], "\[Equal]", RowBox[List[FractionBox["1", "k"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", "1"]], "k"], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["j", " ", "m"]], "-", "k", "+", "m"]], ")"]], " ", SubscriptBox["c", "m"], " ", SubscriptBox["p", RowBox[List["j", ",", RowBox[List["k", "-", "m"]]]]]]]]]]]]], "\[And]", RowBox[List["k", "\[Element]", "Integers"]], "\[And]", RowBox[List["k", ">", "0"]], "\[And]", RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", ">", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <msub> <mi> c </mi> <mi> k </mi> </msub> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> k </mi> </msup> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> &#63449; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mrow> <mi> p </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> , </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> k </mi> </msup> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <msub> <mi> p </mi> <mrow> <mi> j </mi> <mo> , </mo> <mn> 0 </mn> </mrow> </msub> <mo> &#63449; </mo> <mn> 1 </mn> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> p </mi> <mrow> <mi> j </mi> <mo> , </mo> <mi> k </mi> </mrow> </msub> <mo> &#63449; </mo> <mrow> <mfrac> <mn> 1 </mn> <mi> k </mi> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> m </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> k </mi> </munderover> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> j </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mi> m </mi> <mo> - </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <mi> c </mi> <mi> m </mi> </msub> <mo> &#8290; </mo> <msub> <mi> p </mi> <mrow> <mi> j </mi> <mo> , </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> m </mi> </mrow> </mrow> </msub> </mrow> </mrow> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <mi> k </mi> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> <mo> &#8743; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <semantics> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> <annotation encoding='Mathematica'> TagBox[SuperscriptBox[&quot;\[DoubleStruckCapitalN]&quot;, &quot;+&quot;], Function[List[], Integers]] </annotation> </semantics> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <ci> Subscript </ci> <ci> c </ci> <ci> k </ci> </apply> <apply> <power /> <ci> z </ci> <ci> k </ci> </apply> </apply> </apply> </apply> <ci> n </ci> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <ci> p </ci> <ci> n </ci> <ci> k </ci> </apply> <apply> <power /> <ci> z </ci> <ci> k </ci> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> j </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> j </ci> <ci> k </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> k </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> m </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> k </ci> </uplimit> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> j </ci> <ci> m </ci> </apply> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> <apply> <ci> Subscript </ci> <ci> c </ci> <ci> m </ci> </apply> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> j </ci> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> k </ci> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> <apply> <in /> <ci> n </ci> <integers /> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k_", "=", "1"]], "\[Infinity]"], RowBox[List[SubscriptBox["c_", "k_"], " ", SuperscriptBox["z_", "k_"]]]]]]], ")"]], "n_"], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[SubscriptBox["p", RowBox[List["n", ",", "k"]]], " ", SuperscriptBox["z", "k"]]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["p", RowBox[List["j", ",", "0"]]], "\[Equal]", "1"]], "&&", RowBox[List[SubscriptBox["p", RowBox[List["j", ",", "k"]]], "\[Equal]", FractionBox[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", "1"]], "k"], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["j", " ", "m"]], "-", "k", "+", "m"]], ")"]], " ", SubscriptBox["c", "m"], " ", SubscriptBox["p", RowBox[List["j", ",", RowBox[List["k", "-", "m"]]]]]]]]], "k"]]], "&&", RowBox[List["k", "\[Element]", "Integers"]], "&&", RowBox[List["k", ">", "0"]], "&&", RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", ">", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02