|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.02.10.0008.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(1 + z)^a ==
1/(1 - a (z/(1 + (1 + a) z + ContinueFraction[{(-k) (a + k) z (1 + z),
1 + k + (1 + a + 2 k) z}, {k, 1, Infinity}]))) /; Re[z] > -(1/2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], "a"], "\[Equal]", RowBox[List["1", "/", RowBox[List["(", RowBox[List["1", "-", RowBox[List["a", " ", RowBox[List["z", "/", RowBox[List["(", RowBox[List["1", "+", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "a"]], ")"]], " ", "z"]], "+", RowBox[List["ContinueFraction", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[RowBox[List["-", "k"]], " ", RowBox[List["(", RowBox[List["a", "+", "k"]], ")"]], " ", "z", " ", RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]]]], ",", RowBox[List["1", "+", "k", "+", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "a", "+", RowBox[List["2", " ", "k"]]]], ")"]], " ", "z"]]]]]], "}"]], ",", RowBox[List["{", RowBox[List["k", ",", "1", ",", InterpretationBox["\[Infinity]", DirectedInfinity[1]]]], "}"]]]], "]"]]]], ")"]]]]]]]], ")"]]]]]], "/;", "\[InvisibleSpace]", RowBox[List[RowBox[List["Re", "[", "z", "]"]], ">", RowBox[List["-", FractionBox["1", "2"]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mi> a </mi> </msup> <mo> ⩵ </mo> <mfrac> <mn> 1 </mn> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <msubsup> <mrow> <msub> <mi> Κ </mi> <mi> k </mi> </msub> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> k </mi> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mi> k </mi> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 1 </mn> <mi> ∞ </mi> </msubsup> </mrow> </mfrac> </mrow> </mfrac> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> > </mo> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <ci> z </ci> </apply> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <ci> z </ci> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <ci> z </ci> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <apply> <apply> <ci> Subscript </ci> <ci> Κ </ci> <ci> k </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <plus /> <ci> a </ci> <ci> k </ci> </apply> <ci> z </ci> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <plus /> <ci> k </ci> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> <ci> z </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <infinity /> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <gt /> <apply> <real /> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z_"]], ")"]], "a_"], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox["1", RowBox[List["1", "-", FractionBox[RowBox[List["a", " ", "z"]], RowBox[List["1", "+", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "a"]], ")"]], " ", "z"]], "+", RowBox[List["ContinueFraction", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[RowBox[List["-", "k"]], " ", RowBox[List["(", RowBox[List["a", "+", "k"]], ")"]], " ", "z", " ", RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]]]], ",", RowBox[List["1", "+", "k", "+", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "a", "+", RowBox[List["2", " ", "k"]]]], ")"]], " ", "z"]]]]]], "}"]], ",", RowBox[List["{", RowBox[List["k", ",", "1", ",", "\[Infinity]"]], "}"]]]], "]"]]]]]]]], "/;", RowBox[List[RowBox[List["Re", "[", "z", "]"]], ">", RowBox[List["-", FractionBox["1", "2"]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|