Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Power






Mathematica Notation

Traditional Notation









Elementary Functions > Power[z,a] > Complex characteristics > Imaginary part





http://functions.wolfram.com/01.02.19.0014.01









  


  










Input Form





Im[z^a] == (Re[z]/(2 Im[z])) Sqrt[-(Im[z]^2/Re[z]^2)] ((Re[z] - Re[z] Sqrt[-(Im[z]^2/Re[z]^2)])^a - (Re[z] + Re[z] Sqrt[-(Im[z]^2/Re[z]^2)])^a) /; Element[a, Reals] && Re[z] != 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["Im", "[", SuperscriptBox["z", "a"], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[" ", RowBox[List["Re", "[", "z", "]"]]]], RowBox[List["2", " ", RowBox[List["Im", "[", "z", "]"]]]]], SqrtBox[RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["Im", "[", "z", "]"]], "2"], SuperscriptBox[RowBox[List["Re", "[", "z", "]"]], "2"]]]]], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["Re", "[", "z", "]"]], "-", RowBox[List[RowBox[List["Re", "[", "z", "]"]], SqrtBox[RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["Im", "[", "z", "]"]], "2"], SuperscriptBox[RowBox[List["Re", "[", "z", "]"]], "2"]]]]]]]]], ")"]], "a"], "-", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["Re", "[", "z", "]"]], "+", RowBox[List[RowBox[List["Re", "[", "z", "]"]], SqrtBox[RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["Im", "[", "z", "]"]], "2"], SuperscriptBox[RowBox[List["Re", "[", "z", "]"]], "2"]]]]]]]]], ")"]], "a"]]], ")"]]]]]], " ", "/;", RowBox[List[RowBox[List["Element", "[", RowBox[List["a", ",", "Reals"]], "]"]], "\[And]", RowBox[List[RowBox[List["Re", "[", "z", "]"]], "\[NotEqual]", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <msup> <mi> z </mi> <mi> a </mi> </msup> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mrow> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <msup> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <msup> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <msup> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <msup> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mi> a </mi> </msup> <mo> - </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mrow> <mo> - </mo> <mfrac> <msup> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <msup> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mi> a </mi> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8712; </mo> <semantics> <mi> &#8477; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalR]&quot;, Function[Reals]] </annotation> </semantics> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8800; </mo> <mn> 0 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <imaginary /> <apply> <power /> <ci> z </ci> <ci> a </ci> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <real /> <ci> z </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <imaginary /> <ci> z </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <imaginary /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <real /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <power /> <apply> <plus /> <apply> <real /> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <real /> <ci> z </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <imaginary /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <real /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <imaginary /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <real /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <real /> <ci> z </ci> </apply> </apply> <apply> <real /> <ci> z </ci> </apply> </apply> <ci> a </ci> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <ci> a </ci> <reals /> </apply> <apply> <neq /> <apply> <real /> <ci> z </ci> </apply> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Im", "[", SuperscriptBox["z_", "a_"], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["Re", "[", "z", "]"]], " ", SqrtBox[RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["Im", "[", "z", "]"]], "2"], SuperscriptBox[RowBox[List["Re", "[", "z", "]"]], "2"]]]]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["Re", "[", "z", "]"]], "-", RowBox[List[RowBox[List["Re", "[", "z", "]"]], " ", SqrtBox[RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["Im", "[", "z", "]"]], "2"], SuperscriptBox[RowBox[List["Re", "[", "z", "]"]], "2"]]]]]]]]], ")"]], "a"], "-", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["Re", "[", "z", "]"]], "+", RowBox[List[RowBox[List["Re", "[", "z", "]"]], " ", SqrtBox[RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["Im", "[", "z", "]"]], "2"], SuperscriptBox[RowBox[List["Re", "[", "z", "]"]], "2"]]]]]]]]], ")"]], "a"]]], ")"]]]], RowBox[List["2", " ", RowBox[List["Im", "[", "z", "]"]]]]], "/;", RowBox[List[RowBox[List["a", "\[Element]", "Reals"]], "&&", RowBox[List[RowBox[List["Re", "[", "z", "]"]], "\[NotEqual]", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29