|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.02.22.0006.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
InverseFourierTransform[t^n, t, x] == I^n Sqrt[2 Pi]
Derivative[n][DiracDelta][x] /; Element[n, Integers] && n >= 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["InverseFourierTransform", "[", RowBox[List[SuperscriptBox["t", "n"], ",", "t", ",", "x"]], "]"]], "\[Equal]", RowBox[List[SuperscriptBox["\[ImaginaryI]", "n"], " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", RowBox[List[SuperscriptBox["DiracDelta", TagBox[RowBox[List["(", "n", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "x", "]"]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mrow> <msubsup> <mi> ℱ </mi> <mi> t </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msubsup> <mo> [ </mo> <msup> <mi> t </mi> <mi> n </mi> </msup> <mo> ] </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <msup> <mi> ⅈ </mi> <mi> n </mi> </msup> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <msup> <mi> δ </mi> <semantics> <mrow> <mo> ( </mo> <mi> n </mi> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", "n", ")"]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <semantics> <mi> ℕ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalN]", Function[Integers]] </annotation> </semantics> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> InverseFourierTransform </ci> <apply> <power /> <ci> t </ci> <ci> n </ci> </apply> <ci> t </ci> <ci> x </ci> </apply> <apply> <times /> <apply> <power /> <imaginaryi /> <ci> n </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <partialdiff /> <bvar> <ci> x </ci> <degree> <ci> n </ci> </degree> </bvar> <apply> <ci> δ </ci> <ci> x </ci> </apply> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <integers /> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["InverseFourierTransform", "[", RowBox[List[SuperscriptBox["t_", "n_"], ",", "t_", ",", "x_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SuperscriptBox["\[ImaginaryI]", "n"], " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", RowBox[List[SuperscriptBox["DiracDelta", TagBox[RowBox[List["(", "n", ")"]], Derivative], Rule[MultilineFunction, None]], "[", "x", "]"]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|