|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.02.23.0022.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Sum[Product[1/Subscript[k, j]^2, {j, 1, m}],
{Subscript[k, 1], 1, Infinity},
{Subscript[k, 2], Subscript[k, 2] + 1, Infinity},
â¦, {Subscript[k, m], Subscript[k, m - 1] + 1, Infinity}] ==
Pi^(2*m)/(2*m + 1)! /; m â Integers && m > 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", "1"], "=", "1"]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", "2"], "=", RowBox[List[SubscriptBox["k", "1"], "+", "1"]]]], "\[Infinity]"], RowBox[List["\[Ellipsis]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", "m"], "=", RowBox[List[SubscriptBox["k", RowBox[List["m", "-", "1"]]], "+", "1"]]]], "\[Infinity]"], RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "m"], FractionBox["1", SubsuperscriptBox["k", "j", "2"]]]], ")"]]]]]]]]]], "\[Equal]", FractionBox[SuperscriptBox["\[Pi]", RowBox[List["2", "m"]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", "m"]], "+", "1"]], ")"]], "!"]]]]], "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", ">", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <munderover> <mo> ∑ </mo> <mrow> <msub> <mi> k </mi> <mn> 1 </mn> </msub> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <munderover> <mo> ∑ </mo> <mrow> <msub> <mi> k </mi> <mn> 2 </mn> </msub> <mo> = </mo> <mrow> <msub> <mi> k </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mo> … </mo> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <msub> <mi> k </mi> <mi> m </mi> </msub> <mo> = </mo> <mrow> <msub> <mi> k </mi> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> m </mi> </munderover> <mfrac> <mn> 1 </mn> <msubsup> <mi> k </mi> <mi> j </mi> <mn> 2 </mn> </msubsup> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mfrac> <msup> <mi> π </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> m </mi> </mrow> </msup> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> </mrow> <mo> /; </mo> <mrow> <mi> m </mi> <mo> ∈ </mo> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <sum /> <bvar> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 2 </cn> </apply> </bvar> <lowlimit> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <sum /> <bvar> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <ci> … </ci> <apply> <sum /> <bvar> <apply> <ci> Subscript </ci> <ci> k </ci> <ci> m </ci> </apply> </bvar> <lowlimit> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> k </ci> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <product /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> m </ci> </uplimit> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> k </ci> <ci> j </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <pi /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> m </ci> </apply> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> m </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <in /> <ci> m </ci> <apply> <ci> SuperPlus </ci> <ci> ℕ </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k_", "1"], "=", "1"]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k_", "2"], "=", RowBox[List[SubscriptBox["k_", "1"], "+", "1"]]]], "\[Infinity]"], RowBox[List["\[Ellipsis]_", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k_", "m_"], "=", RowBox[List[SubscriptBox["k_", RowBox[List["m_", "-", "1"]]], "+", "1"]]]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j_", "=", "1"]], "m_"], FractionBox["1", SubsuperscriptBox["k_", "j_", "2"]]]]]]]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[SuperscriptBox["\[Pi]", RowBox[List["2", " ", "m"]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "m"]], "+", "1"]], ")"]], "!"]]], "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", ">", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|