Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
ProductLog






Mathematica Notation

Traditional Notation









Elementary Functions > ProductLog[z] > Integral representations > On the real axis > Of the direct function





http://functions.wolfram.com/01.31.07.0001.01









  


  










Input Form





ProductLog[z] == 1 + (Log[z] - 1) Exp[(I/(2 Pi)) Integrate[(1/(1 + t)) Log[(Log[z] + t - Log[t] - I Pi)/ (Log[z] + t - Log[t] + I Pi)], {t, 0, Infinity}]] /; !IntervalMemberQ[Interval[{-(1/E), 0}], z]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["ProductLog", "[", "z", "]"]], "\[Equal]", RowBox[List["1", "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "z", "]"]], "-", "1"]], ")"]], " ", RowBox[List["Exp", "[", RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " "]], RowBox[List["2", " ", "\[Pi]"]]], RowBox[List[SubsuperscriptBox["\[Integral]", "0", InterpretationBox["\[Infinity]", DirectedInfinity[1]]], RowBox[List[FractionBox["1", RowBox[List["1", "+", "t"]]], RowBox[List["Log", "[", FractionBox[RowBox[List[RowBox[List["Log", "[", "z", "]"]], "+", "t", "-", RowBox[List["Log", "[", "t", "]"]], "-", RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]]]], RowBox[List[RowBox[List["Log", "[", "z", "]"]], "+", "t", "-", RowBox[List["Log", "[", "t", "]"]], "+", " ", RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]]]]], "]"]], RowBox[List["\[DifferentialD]", "t"]]]]]]]], "]"]]]]]]]], "/;", RowBox[List["Not", "[", RowBox[List["IntervalMemberQ", "[", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["1", "\[ExponentialE]"]]], ",", "0"]], "}"]], "]"]], ",", "z"]], "]"]], "]"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mi> W </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> exp </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> &#8520; </mi> <mtext> </mtext> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msubsup> <mo> &#8747; </mo> <mn> 0 </mn> <semantics> <mi> &#8734; </mi> <annotation-xml encoding='MathML-Content'> <infinity /> </annotation-xml> </semantics> </msubsup> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> t </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mi> t </mi> <mo> - </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> t </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mtext> </mtext> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mrow> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mi> t </mi> <mo> - </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> t </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mtext> </mtext> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> t </mi> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> z </mi> <mo> &#8713; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mi> &#8519; </mi> </mfrac> </mrow> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> <mtext> &#8203; </mtext> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <mrow> <mrow> <mrow> <mi> W </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> exp </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> &#8520; </mi> <mtext> </mtext> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msubsup> <mo> &#8747; </mo> <mn> 0 </mn> <semantics> <mi> &#8734; </mi> <annotation-xml encoding='MathML-Content'> <infinity /> </annotation-xml> </semantics> </msubsup> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> t </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mi> t </mi> <mo> - </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> t </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mtext> </mtext> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mrow> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mi> t </mi> <mo> - </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> t </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mtext> </mtext> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> t </mi> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> z </mi> <mo> &#8713; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mi> &#8519; </mi> </mfrac> </mrow> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> <mtext> &#8203; </mtext> </mrow> </mrow> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ProductLog", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["1", "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "z", "]"]], "-", "1"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Infinity]"], RowBox[List[FractionBox[RowBox[List["Log", "[", FractionBox[RowBox[List[RowBox[List["Log", "[", "z", "]"]], "+", "t", "-", RowBox[List["Log", "[", "t", "]"]], "-", RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]]]], RowBox[List[RowBox[List["Log", "[", "z", "]"]], "+", "t", "-", RowBox[List["Log", "[", "t", "]"]], "+", RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]]]]], "]"]], RowBox[List["1", "+", "t"]]], RowBox[List["\[DifferentialD]", "t"]]]]]]]], RowBox[List["2", " ", "\[Pi]"]]]]]]]], "/;", RowBox[List["!", RowBox[List["IntervalMemberQ", "[", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["1", "\[ExponentialE]"]]], ",", "0"]], "}"]], "]"]], ",", "z"]], "]"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29