Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Sec






Mathematica Notation

Traditional Notation









Elementary Functions > Sec[z] > Visualizations





2D plots along the axes and unit circle (19 graphics)


On the real axis

The function along the real axis. is an oscillating periodic function with period that has first‐order poles at .

The absolute value and the argument of along the real axis. The left graphic shows and the right graphic shows . The argument is piecewise constant.

On the real axis at infinity

The function along the real axis. At , the function has an essential singularity and oscillates infinitely often.

The absolute value and the argument of along the real axis. The left graphic shows and the right graphic shows . The argument is piecewise constant.

On the imaginary axes

The real part and the imaginary part of along the imaginary axis. The left graphic shows and the right graphic shows . Along the imaginary axis, is purely imaginary and vanishes identically.

The absolute value and the argument of along the imaginary axis. The left graphic shows and the right graphic shows . Because is vanishes identically on the imaginary axis, the argument is 0 there.

On the imaginary axis at infinity

The function along the imaginary axis. The left graphic shows and the right graphic shows .

The absolute value and the argument of along the imaginary axis. The left graphic shows and the right graphic shows .

On the unit circle

The real part and the imaginary part of on the unit circle. The left graphic shows and the right graphic shows .

The absolute value and the argument of on the unit circle. The left graphic shows and the right graphic shows .