|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.24.03.0066.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Sech[(6 Pi I)/7] == -(12 2^(2/3) (7 - 21 I Sqrt[3])^(1/3))/
(14 - 14 I Sqrt[3] + 2 I Sqrt[3] (7/2 - (21 I Sqrt[3])/2)^(2/3) +
2 2^(2/3) (7 - 21 I Sqrt[3])^(1/3) + 2^(1/3) (7 - 21 I Sqrt[3])^(2/3))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["Sech", "[", FractionBox[RowBox[List["6", " ", "\[Pi]", " ", "\[ImaginaryI]"]], "7"], "]"]], "\[Equal]", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["12", " ", SuperscriptBox["2", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["7", "-", RowBox[List["21", " ", "\[ImaginaryI]", " ", SqrtBox["3"]]]]], ")"]], RowBox[List["1", "/", "3"]]]]], ")"]]]], "/", RowBox[List["(", RowBox[List["14", "-", RowBox[List["14", " ", "\[ImaginaryI]", " ", SqrtBox["3"]]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", SqrtBox["3"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[FractionBox["7", "2"], "-", FractionBox[RowBox[List["21", " ", "\[ImaginaryI]", " ", SqrtBox["3"]]], "2"]]], ")"]], RowBox[List["2", "/", "3"]]]]], "+", RowBox[List["2", " ", SuperscriptBox["2", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["7", "-", RowBox[List["21", " ", "\[ImaginaryI]", " ", SqrtBox["3"]]]]], ")"]], RowBox[List["1", "/", "3"]]]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List["1", "/", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["7", "-", RowBox[List["21", " ", "\[ImaginaryI]", " ", SqrtBox["3"]]]]], ")"]], RowBox[List["2", "/", "3"]]]]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mi> sech </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mn> 6 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> <mn> 7 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mn> 12 </mn> <mo> ⁢ </mo> <msup> <mn> 2 </mn> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> ⁢ </mo> <mroot> <mrow> <mn> 7 </mn> <mo> - </mo> <mrow> <mn> 21 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> </mrow> <mn> 3 </mn> </mroot> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mn> 2 </mn> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> ⁢ </mo> <mroot> <mrow> <mn> 7 </mn> <mo> - </mo> <mrow> <mn> 21 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> </mrow> <mn> 3 </mn> </mroot> </mrow> <mo> + </mo> <mrow> <mroot> <mn> 2 </mn> <mn> 3 </mn> </mroot> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 7 </mn> <mo> - </mo> <mrow> <mn> 21 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mn> 3 </mn> </msqrt> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mfrac> <mn> 7 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mfrac> <mrow> <mn> 21 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> <mo> - </mo> <mrow> <mn> 14 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> <mo> + </mo> <mn> 14 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <sech /> <apply> <times /> <cn type='integer'> 6 </cn> <pi /> <imaginaryi /> <apply> <power /> <cn type='integer'> 7 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 12 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 7 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 21 </cn> <imaginaryi /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 7 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 21 </cn> <imaginaryi /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 7 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 21 </cn> <imaginaryi /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='rational'> 7 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 21 </cn> <imaginaryi /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <imaginaryi /> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 14 </cn> <imaginaryi /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 14 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Sech", "[", FractionBox[RowBox[List["6", " ", "\[Pi]", " ", "\[ImaginaryI]"]], "7"], "]"]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List["12", " ", SuperscriptBox["2", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["7", "-", RowBox[List["21", " ", "\[ImaginaryI]", " ", SqrtBox["3"]]]]], ")"]], RowBox[List["1", "/", "3"]]]]], RowBox[List["14", "-", RowBox[List["14", " ", "\[ImaginaryI]", " ", SqrtBox["3"]]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", SqrtBox["3"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[FractionBox["7", "2"], "-", FractionBox[RowBox[List["21", " ", "\[ImaginaryI]", " ", SqrtBox["3"]]], "2"]]], ")"]], RowBox[List["2", "/", "3"]]]]], "+", RowBox[List["2", " ", SuperscriptBox["2", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["7", "-", RowBox[List["21", " ", "\[ImaginaryI]", " ", SqrtBox["3"]]]]], ")"]], RowBox[List["1", "/", "3"]]]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List["1", "/", "3"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["7", "-", RowBox[List["21", " ", "\[ImaginaryI]", " ", SqrtBox["3"]]]]], ")"]], RowBox[List["2", "/", "3"]]]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|