Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Sech






Mathematica Notation

Traditional Notation









Elementary Functions > Sech[z] > Transformations > Transformations and argument simplifications > Argument involving inverse trigonometric and hyperbolic functions > Involving sec-1





http://functions.wolfram.com/01.24.16.0069.01









  


  










Input Form





Sech[ArcSec[z]] == (2 E^(Pi/2) (Sqrt[1 - 1/z^2] + I/z)^I)/ (1 + E^Pi (Sqrt[1 - 1/z^2] + I/z)^(2 I))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["Sech", "[", RowBox[List["ArcSec", "[", "z", "]"]], "]"]], "\[Equal]", FractionBox[RowBox[List["2", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[Pi]", "/", "2"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["z", "2"]]]]], "+", FractionBox["\[ImaginaryI]", "z"]]], ")"]], "\[ImaginaryI]"]]], RowBox[List["1", "+", RowBox[List[SuperscriptBox["\[ExponentialE]", "\[Pi]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["z", "2"]]]]], "+", FractionBox["\[ImaginaryI]", "z"]]], ")"]], RowBox[List["2", " ", "\[ImaginaryI]"]]]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mi> sech </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msup> <mi> sec </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> &#960; </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> + </mo> <mfrac> <mi> &#8520; </mi> <mi> z </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> <mi> &#8520; </mi> </msup> </mrow> <mrow> <mrow> <msup> <mi> &#8519; </mi> <mi> &#960; </mi> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> + </mo> <mfrac> <mi> &#8520; </mi> <mi> z </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> </msup> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <sech /> <apply> <arcsec /> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <imaginaryi /> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <imaginaryi /> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <pi /> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <imaginaryi /> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Sech", "[", RowBox[List["ArcSec", "[", "z_", "]"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["2", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[Pi]", "/", "2"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["z", "2"]]]]], "+", FractionBox["\[ImaginaryI]", "z"]]], ")"]], "\[ImaginaryI]"]]], RowBox[List["1", "+", RowBox[List[SuperscriptBox["\[ExponentialE]", "\[Pi]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["z", "2"]]]]], "+", FractionBox["\[ImaginaryI]", "z"]]], ")"]], RowBox[List["2", " ", "\[ImaginaryI]"]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02