|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.24.21.0091.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[Sech[c z]/Sqrt[Sinh[c z]], z] ==
(-((2 (Tanh[c z]^2)^(3/4))/(3 c Sinh[c z]^(3/2))))
Hypergeometric2F1[3/4, 3/4, 7/4, Sech[c z]^2]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List["Sech", "[", RowBox[List["c", " ", "z"]], "]"]], SqrtBox[RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]]]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", SuperscriptBox[RowBox[List["Tanh", "[", RowBox[List["c", " ", "z"]], "]"]], "2"], ")"]], RowBox[List["3", "/", "4"]]]]], RowBox[List["3", " ", "c", " ", SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]], RowBox[List["3", "/", "2"]]]]]]]], RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox["3", "4"], ",", FractionBox["3", "4"], ",", FractionBox["7", "4"], ",", SuperscriptBox[RowBox[List["Sech", "[", RowBox[List["c", " ", "z"]], "]"]], "2"]]], "]"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> ∫ </mo> <mrow> <mfrac> <mrow> <mi> sech </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <msup> <mi> sinh </mi> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mrow> <msup> <mi> tanh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> </mrow> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sinh </mi> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 3 </mn> <mn> 4 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 3 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ; </mo> <mfrac> <mn> 7 </mn> <mn> 4 </mn> </mfrac> <mo> ; </mo> <mrow> <msup> <mi> sech </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox["3", "4"], Hypergeometric2F1], ",", TagBox[FractionBox["3", "4"], Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[FractionBox["7", "4"], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[RowBox[List[SuperscriptBox["sech", "2"], "(", RowBox[List["c", " ", "z"]], ")"]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <sech /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <sinh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <power /> <apply> <tanh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 3 <sep /> 4 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> c </ci> <apply> <power /> <apply> <sinh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <cn type='rational'> 3 <sep /> 4 </cn> <cn type='rational'> 3 <sep /> 4 </cn> <cn type='rational'> 7 <sep /> 4 </cn> <apply> <power /> <apply> <sech /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List["Sech", "[", RowBox[List["c_", " ", "z_"]], "]"]], SqrtBox[RowBox[List["Sinh", "[", RowBox[List["c_", " ", "z_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", SuperscriptBox[RowBox[List["Tanh", "[", RowBox[List["c", " ", "z"]], "]"]], "2"], ")"]], RowBox[List["3", "/", "4"]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox["3", "4"], ",", FractionBox["3", "4"], ",", FractionBox["7", "4"], ",", SuperscriptBox[RowBox[List["Sech", "[", RowBox[List["c", " ", "z"]], "]"]], "2"]]], "]"]]]], RowBox[List["3", " ", "c", " ", SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]], RowBox[List["3", "/", "2"]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|