Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Sech






Mathematica Notation

Traditional Notation









Elementary Functions > Sech[z] > Integration > Indefinite integration > Involving one direct function and elementary functions > Involving hyperbolic functions > Involving algebraic functions of cosh and csch





http://functions.wolfram.com/01.24.21.0155.01









  


  










Input Form





Integrate[Sqrt[a (-1 + Cosh[c z])] Csch[(c z)/2]^2 Sech[c z], z] == (1/c) (2 Sqrt[a (-1 + Cosh[c z])] Csch[(c z)/2] (I Sqrt[2] ArcTan[(-I) Sqrt[2] - Tanh[(c z)/4]] + Sqrt[2] ArcTanh[Sqrt[2] + I Tanh[(c z)/4]] - Log[Cosh[(c z)/4]] + Log[Sinh[(c z)/4]]))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SqrtBox[RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]]]], ")"]]]]], " ", SuperscriptBox[RowBox[List["Csch", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]], "2"], " ", RowBox[List["Sech", "[", RowBox[List["c", " ", "z"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", "c"], RowBox[List["(", RowBox[List["2", " ", SqrtBox[RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]]]], ")"]]]]], " ", RowBox[List["Csch", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", SqrtBox["2"]]], "-", RowBox[List["Tanh", "[", FractionBox[RowBox[List["c", " ", "z"]], "4"], "]"]]]], "]"]]]], "+", RowBox[List[SqrtBox["2"], " ", RowBox[List["ArcTanh", "[", RowBox[List[SqrtBox["2"], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Tanh", "[", FractionBox[RowBox[List["c", " ", "z"]], "4"], "]"]]]]]], "]"]]]], "-", RowBox[List["Log", "[", RowBox[List["Cosh", "[", FractionBox[RowBox[List["c", " ", "z"]], "4"], "]"]], "]"]], "+", RowBox[List["Log", "[", RowBox[List["Sinh", "[", FractionBox[RowBox[List["c", " ", "z"]], "4"], "]"]], "]"]]]], ")"]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <msqrt> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <msup> <mi> csch </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sech </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mi> c </mi> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mi> csch </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mi> tanh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 4 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mn> 2 </mn> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mi> tanh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 4 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <msqrt> <mn> 2 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 4 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 4 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <apply> <times /> <ci> a </ci> <apply> <plus /> <apply> <cosh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <csch /> <apply> <times /> <ci> c </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <sech /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <ci> a </ci> <apply> <plus /> <apply> <cosh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <csch /> <apply> <times /> <ci> c </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <arctan /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <tanh /> <apply> <times /> <ci> c </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <arctanh /> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <tanh /> <apply> <times /> <ci> c </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <apply> <cosh /> <apply> <times /> <ci> c </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <ln /> <apply> <sinh /> <apply> <times /> <ci> c </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SqrtBox[RowBox[List["a_", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["Cosh", "[", RowBox[List["c_", " ", "z_"]], "]"]]]], ")"]]]]], " ", SuperscriptBox[RowBox[List["Csch", "[", FractionBox[RowBox[List["c_", " ", "z_"]], "2"], "]"]], "2"], " ", RowBox[List["Sech", "[", RowBox[List["c_", " ", "z_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["2", " ", SqrtBox[RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]]]], ")"]]]]], " ", RowBox[List["Csch", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", SqrtBox["2"]]], "-", RowBox[List["Tanh", "[", FractionBox[RowBox[List["c", " ", "z"]], "4"], "]"]]]], "]"]]]], "+", RowBox[List[SqrtBox["2"], " ", RowBox[List["ArcTanh", "[", RowBox[List[SqrtBox["2"], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Tanh", "[", FractionBox[RowBox[List["c", " ", "z"]], "4"], "]"]]]]]], "]"]]]], "-", RowBox[List["Log", "[", RowBox[List["Cosh", "[", FractionBox[RowBox[List["c", " ", "z"]], "4"], "]"]], "]"]], "+", RowBox[List["Log", "[", RowBox[List["Sinh", "[", FractionBox[RowBox[List["c", " ", "z"]], "4"], "]"]], "]"]]]], ")"]]]], "c"]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18