|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.24.21.0190.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[E^(p z) Tanh[c z] Sech[c z], z] ==
2 E^((-3 c + p) z) ((-(c (-1 + 3 E^(2 c z)) + p - E^(2 c z) p))
(HypergeometricPFQ[{2, 1/2 - p/(2 c)}, {5/2 - p/(2 c)}, -E^(-2 c z)]/
((-3 c + p) (-c + p))) + (4 c (-1 + E^(2 c z))
(HypergeometricPFQ[{3, 3/2 - p/(2 c)}, {7/2 - p/(2 c)}, -E^(-2 c z)]/
((3 c - p) (5 c - p))))/E^(2 c z))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["p", " ", "z"]]], RowBox[List["Tanh", "[", RowBox[List["c", " ", "z"]], "]"]], RowBox[List["Sech", "[", RowBox[List["c", " ", "z"]], "]"]], " ", RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List["2", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "3"]], " ", "c"]], "+", "p"]], ")"]], " ", "z"]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["3", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], ")"]]]], "+", "p", "-", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]], " ", "p"]]]], ")"]]]], " ", RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["2", ",", RowBox[List[FractionBox["1", "2"], "-", FractionBox["p", RowBox[List["2", " ", "c"]]]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["5", "2"], "-", FractionBox["p", RowBox[List["2", " ", "c"]]]]], "}"]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", "c", " ", "z"]]]]]]], "]"]], "/", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "3"]], " ", "c"]], "+", "p"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "c"]], "+", "p"]], ")"]]]], ")"]]]]]], "+", RowBox[List["4", " ", "c", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", "c", " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], ")"]], " ", RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["3", ",", RowBox[List[FractionBox["3", "2"], "-", FractionBox["p", RowBox[List["2", " ", "c"]]]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["7", "2"], "-", FractionBox["p", RowBox[List["2", " ", "c"]]]]], "}"]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", "c", " ", "z"]]]]]]], "]"]], "/", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["3", " ", "c"]], "-", "p"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["5", " ", "c"]], "-", "p"]], ")"]]]], ")"]]]]]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> ∫ </mo> <mrow> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mi> p </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> tanh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> sech </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> + </mo> <msup> <mi> ⅇ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> , </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mfrac> <mi> p </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mfrac> </mrow> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 7 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mfrac> <mi> p </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mfrac> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["3", HypergeometricPFQ], ",", TagBox[RowBox[List[FractionBox["3", "2"], "-", FractionBox["p", RowBox[List["2", " ", "c"]]]]], HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[TagBox[TagBox[RowBox[List[FractionBox["7", "2"], "-", FractionBox["p", RowBox[List["2", " ", "c"]]]]], HypergeometricPFQ], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", "c", " ", "z"]]]]], HypergeometricPFQ]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], HypergeometricPFQ] </annotation> </semantics> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> - </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 5 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> - </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> - </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> <mo> ⁢ </mo> <mi> p </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mfrac> <mi> p </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mfrac> </mrow> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 5 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mfrac> <mi> p </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mfrac> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["2", HypergeometricPFQ], ",", TagBox[RowBox[List[FractionBox["1", "2"], "-", FractionBox["p", RowBox[List["2", " ", "c"]]]]], HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[TagBox[TagBox[RowBox[List[FractionBox["5", "2"], "-", FractionBox["p", RowBox[List["2", " ", "c"]]]]], HypergeometricPFQ], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", "c", " ", "z"]]]]], HypergeometricPFQ]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], HypergeometricPFQ] </annotation> </semantics> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <ci> p </ci> <ci> z </ci> </apply> </apply> <apply> <tanh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <sech /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <ci> c </ci> </apply> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> c </ci> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='integer'> 3 </cn> <apply> <plus /> <cn type='rational'> 3 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> p </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </list> <list> <apply> <plus /> <cn type='rational'> 7 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> p </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 5 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> c </ci> <apply> <plus /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> <ci> p </ci> </apply> </apply> <ci> p </ci> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='integer'> 2 </cn> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> p </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </list> <list> <apply> <plus /> <cn type='rational'> 5 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> p </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <ci> c </ci> </apply> </apply> </apply> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["p_", " ", "z_"]]], " ", RowBox[List["Tanh", "[", RowBox[List["c_", " ", "z_"]], "]"]], " ", RowBox[List["Sech", "[", RowBox[List["c_", " ", "z_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List["2", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "3"]], " ", "c"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["3", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], ")"]]]], "+", "p", "-", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]], " ", "p"]]]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["2", ",", RowBox[List[FractionBox["1", "2"], "-", FractionBox["p", RowBox[List["2", " ", "c"]]]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["5", "2"], "-", FractionBox["p", RowBox[List["2", " ", "c"]]]]], "}"]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", "c", " ", "z"]]]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "3"]], " ", "c"]], "+", "p"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "c"]], "+", "p"]], ")"]]]]]]], "+", FractionBox[RowBox[List["4", " ", "c", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", "c", " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["3", ",", RowBox[List[FractionBox["3", "2"], "-", FractionBox["p", RowBox[List["2", " ", "c"]]]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["7", "2"], "-", FractionBox["p", RowBox[List["2", " ", "c"]]]]], "}"]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", "c", " ", "z"]]]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["3", " ", "c"]], "-", "p"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["5", " ", "c"]], "-", "p"]], ")"]]]]]]], ")"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|