| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/01.24.21.0250.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Integrate[E^(p z) Sin[a z]^m Cosh[b z]^u Sech[c z], z] == 
  (1/(c + p)) 2^(1 - m - u) E^((c + p) z) Binomial[m, m/2] Binomial[u, u/2] 
    Hypergeometric2F1[1, (c + p)/(2 c), (1/2) (3 + p/c), -E^(2 c z)] 
    (1 - Mod[m, 2]) (1 - Mod[u, 2]) + 2^(1 - m - u) Binomial[u, u/2] 
    (1 - Mod[u, 2]) Sum[(-1)^k Binomial[m, k] 
      ((E^((I m Pi)/2 + (c + 2 I a k - I a m + p) z) Hypergeometric2F1[1, 
          (c + 2 I a k - I a m + p)/(2 c), (3 c + 2 I a k - I a m + p)/(2 c), 
          -E^(2 c z)])/(c + 2 I a k - I a m + p) + 
       (E^((-(1/2)) I m Pi + (c - 2 I a k + I a m + p) z) 
         Hypergeometric2F1[1, (c - 2 I a k + I a m + p)/(2 c), 
          (3 c - 2 I a k + I a m + p)/(2 c), -E^(2 c z)])/
        (c - 2 I a k + I a m + p)), {k, 0, Floor[(1/2) (-1 + m)]}] + 
   2^(1 - m - u) Binomial[m, m/2] (1 - Mod[m, 2]) 
    Sum[Binomial[u, s] ((E^((c + p + 2 b s - b u) z) Hypergeometric2F1[1, 
          (c + p + 2 b s - b u)/(2 c), (3 c + p + 2 b s - b u)/(2 c), 
          -E^(2 c z)])/(c + p + 2 b s - b u) + 
       (E^((c + p - 2 b s + b u) z) Hypergeometric2F1[1, 
          (c + p - 2 b s + b u)/(2 c), (3 c + p - 2 b s + b u)/(2 c), 
          -E^(2 c z)])/(c + p - 2 b s + b u)), 
     {s, 0, Floor[(1/2) (-1 + u)]}] + 
   (2^(1 - m - u) Sum[(-1)^k Binomial[m, k] 
       Sum[Binomial[u, s] ((E^(I m Pi + (c + 2 I a k - I a m + p + 2 b s - 
                b u) z) Hypergeometric2F1[1, (c + 2 I a k - I a m + p + 2 b 
                s - b u)/(2 c), (3 c + 2 I a k - I a m + p + 2 b s - b u)/
              (2 c), -E^(2 c z)])/(c + 2 I a k - I a m + p + 2 b s - b u) + 
          (E^((c - 2 I a k + I a m + p + 2 b s - b u) z) Hypergeometric2F1[1, 
             (c - 2 I a k + I a m + p + 2 b s - b u)/(2 c), 
             (3 c - 2 I a k + I a m + p + 2 b s - b u)/(2 c), -E^(2 c z)])/
           (c - 2 I a k + I a m + p + 2 b s - b u) + 
          (E^(I m Pi + (c + 2 I a k - I a m + p - 2 b s + b u) z) 
            Hypergeometric2F1[1, (c + 2 I a k - I a m + p - 2 b s + b u)/
              (2 c), (3 c + 2 I a k - I a m + p - 2 b s + b u)/(2 c), 
             -E^(2 c z)])/(c + 2 I a k - I a m + p - 2 b s + b u) + 
          (E^((c - 2 I a k + I a m + p - 2 b s + b u) z) Hypergeometric2F1[1, 
             (c - 2 I a k + I a m + p - 2 b s + b u)/(2 c), 
             (3 c - 2 I a k + I a m + p - 2 b s + b u)/(2 c), -E^(2 c z)])/
           (c - 2 I a k + I a m + p - 2 b s + b u)), 
        {s, 0, Floor[(1/2) (-1 + u)]}], {k, 0, Floor[(1/2) (-1 + m)]}])/
    I^m /; Element[m, Integers] && m > 0 && Element[u, Integers] && u > 0 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["p", " ", "z"]]], SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["a", " ", "z"]], "]"]], "m"], " ", SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List["b", " ", "z"]], "]"]], "u"], " ", RowBox[List["Sech", "[", RowBox[List["c", " ", "z"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List[FractionBox["1", RowBox[List["c", "+", "p"]]], SuperscriptBox["2", RowBox[List["1", "-", "m", "-", "u"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["c", "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["u", ",", FractionBox["u", "2"]]], "]"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List["1", ",", FractionBox[RowBox[List["c", "+", "p"]], RowBox[List["2", " ", "c"]]], ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["3", "+", FractionBox["p", "c"]]], ")"]]]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["u", ",", "2"]], "]"]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List["1", "-", "m", "-", "u"]]], " ", RowBox[List["Binomial", "[", RowBox[List["u", ",", FractionBox["u", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["u", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", "m", " ", "\[Pi]"]], "2"], "+", RowBox[List[RowBox[List["(", RowBox[List["c", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", "p"]], ")"]], " ", "z"]]]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List["1", ",", FractionBox[RowBox[List["c", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", "p"]], RowBox[List["2", " ", "c"]]], ",", FractionBox[RowBox[List[RowBox[List["3", " ", "c"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", "p"]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List["c", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", "p"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", "\[ImaginaryI]", " ", "m", " ", "\[Pi]"]], "+", RowBox[List[RowBox[List["(", RowBox[List["c", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", "p"]], ")"]], " ", "z"]]]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List["1", ",", FractionBox[RowBox[List["c", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", "p"]], RowBox[List["2", " ", "c"]]], ",", FractionBox[RowBox[List[RowBox[List["3", " ", "c"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", "p"]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List["c", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", "p"]], ")"]]]]]], ")"]]]]]]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List["1", "-", "m", "-", "u"]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "u"]], ")"]]]], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["u", ",", "s"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["c", "+", "p", "+", RowBox[List["2", " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "u"]]]], ")"]], " ", "z"]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List["1", ",", FractionBox[RowBox[List["c", "+", "p", "+", RowBox[List["2", " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], ",", FractionBox[RowBox[List[RowBox[List["3", " ", "c"]], "+", "p", "+", RowBox[List["2", " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List["c", "+", "p", "+", RowBox[List["2", " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "u"]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["c", "+", "p", "-", RowBox[List["2", " ", "b", " ", "s"]], "+", RowBox[List["b", " ", "u"]]]], ")"]], " ", "z"]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List["1", ",", FractionBox[RowBox[List["c", "+", "p", "-", RowBox[List["2", " ", "b", " ", "s"]], "+", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], ",", FractionBox[RowBox[List[RowBox[List["3", " ", "c"]], "+", "p", "-", RowBox[List["2", " ", "b", " ", "s"]], "+", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List["c", "+", "p", "-", RowBox[List["2", " ", "b", " ", "s"]], "+", RowBox[List["b", " ", "u"]]]], ")"]]]]]], ")"]]]]]]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List["1", "-", "m", "-", "u"]]], " ", SuperscriptBox["\[ImaginaryI]", RowBox[List["-", "m"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "u"]], ")"]]]], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["u", ",", "s"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "m", " ", "\[Pi]"]], "+", RowBox[List[RowBox[List["(", RowBox[List["c", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", "p", "+", RowBox[List["2", " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "u"]]]], ")"]], " ", "z"]]]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List["1", ",", FractionBox[RowBox[List["c", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", "p", "+", RowBox[List["2", " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], ",", FractionBox[RowBox[List[RowBox[List["3", " ", "c"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", "p", "+", RowBox[List["2", " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List["c", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", "p", "+", RowBox[List["2", " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "u"]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["c", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", "p", "+", RowBox[List["2", " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "u"]]]], ")"]], " ", "z"]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List["1", ",", FractionBox[RowBox[List["c", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", "p", "+", RowBox[List["2", " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], ",", FractionBox[RowBox[List[RowBox[List["3", " ", "c"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", "p", "+", RowBox[List["2", " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List["c", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", "p", "+", RowBox[List["2", " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "u"]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "m", " ", "\[Pi]"]], "+", RowBox[List[RowBox[List["(", RowBox[List["c", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", "p", "-", RowBox[List["2", " ", "b", " ", "s"]], "+", RowBox[List["b", " ", "u"]]]], ")"]], " ", "z"]]]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List["1", ",", FractionBox[RowBox[List["c", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", "p", "-", RowBox[List["2", " ", "b", " ", "s"]], "+", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], ",", FractionBox[RowBox[List[RowBox[List["3", " ", "c"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", "p", "-", RowBox[List["2", " ", "b", " ", "s"]], "+", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List["c", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", "p", "-", RowBox[List["2", " ", "b", " ", "s"]], "+", RowBox[List["b", " ", "u"]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["c", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", "p", "-", RowBox[List["2", " ", "b", " ", "s"]], "+", RowBox[List["b", " ", "u"]]]], ")"]], " ", "z"]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List["1", ",", FractionBox[RowBox[List["c", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", "p", "-", RowBox[List["2", " ", "b", " ", "s"]], "+", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], ",", FractionBox[RowBox[List[RowBox[List["3", " ", "c"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", "p", "-", RowBox[List["2", " ", "b", " ", "s"]], "+", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List["c", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", "p", "-", RowBox[List["2", " ", "b", " ", "s"]], "+", RowBox[List["b", " ", "u"]]]], ")"]]]]]], ")"]]]]]]]]]]]]]]]], "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", ">", "0"]], "\[And]", RowBox[List["u", "\[Element]", "Integers"]], "\[And]", RowBox[List["u", ">", "0"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <mo> ∫ </mo>  <mrow>  <mrow>  <msup>  <mi> ⅇ </mi>  <mrow>  <mi> p </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> sin </mi>  <mi> m </mi>  </msup>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> cosh </mi>  <mi> u </mi>  </msup>  <mo> ( </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> sech </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ⅆ </mo>  <mi> z </mi>  </mrow>  </mrow>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <msup>  <mn> 2 </mn>  <mrow>  <mrow>  <mo> - </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mi> u </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> + </mo>  <mi> p </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <semantics>  <mrow>  <mi> m </mi>  <mo> ⁢ </mo>  <mi> mod </mi>  <mo> ⁢ </mo>  <mn> 2 </mn>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <rem />  <ci> $CellContext`m </ci>  <cn type='integer'> 2 </cn>  </apply>  </annotation-xml>  </semantics>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <semantics>  <mrow>  <mi> u </mi>  <mo> ⁢ </mo>  <mi> mod </mi>  <mo> ⁢ </mo>  <mn> 2 </mn>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <rem />  <ci> $CellContext`u </ci>  <cn type='integer'> 2 </cn>  </apply>  </annotation-xml>  </semantics>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mi> c </mi>  <mo> + </mo>  <mi> p </mi>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> m </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mfrac>  <mi> m </mi>  <mn> 2 </mn>  </mfrac>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["m", Identity]], List[TagBox[FractionBox["m", "2"], Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation>  </semantics>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> u </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mfrac>  <mi> u </mi>  <mn> 2 </mn>  </mfrac>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["u", Identity]], List[TagBox[FractionBox["u", "2"], Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation>  </semantics>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 1 </mn>  <mo> , </mo>  <mfrac>  <mrow>  <mi> c </mi>  <mo> + </mo>  <mi> p </mi>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  </mrow>  <mo> ; </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mfrac>  <mi> p </mi>  <mi> c </mi>  </mfrac>  <mo> + </mo>  <mn> 3 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["1", Hypergeometric2F1], ",", TagBox[FractionBox[RowBox[List["c", "+", "p"]], RowBox[List["2", " ", "c"]]], Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[FractionBox["p", "c"], "+", "3"]], ")"]]]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation>  </semantics>  </mrow>  <mtext>   </mtext>  <mo> + </mo>  <mrow>  <msup>  <mn> 2 </mn>  <mrow>  <mrow>  <mo> - </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mi> u </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> u </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mfrac>  <mi> u </mi>  <mn> 2 </mn>  </mfrac>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["u", Identity]], List[TagBox[FractionBox["u", "2"], Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <semantics>  <mrow>  <mi> u </mi>  <mo> ⁢ </mo>  <mi> mod </mi>  <mo> ⁢ </mo>  <mn> 2 </mn>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <rem />  <ci> $CellContext`u </ci>  <cn type='integer'> 2 </cn>  </apply>  </annotation-xml>  </semantics>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <mo> ⌊ </mo>  <mfrac>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> ⌋ </mo>  </mrow>  </munderover>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mi> k </mi>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> m </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mi> k </mi>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["m", Identity]], List[TagBox["k", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mfrac>  <mrow>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> + </mo>  <mi> p </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> m </mi>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  <mn> 2 </mn>  </mfrac>  </mrow>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 1 </mn>  <mo> , </mo>  <mfrac>  <mrow>  <mi> c </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> + </mo>  <mi> p </mi>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  </mrow>  <mo> ; </mo>  <mfrac>  <mrow>  <mrow>  <mn> 3 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> + </mo>  <mi> p </mi>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["1", Hypergeometric2F1], ",", TagBox[FractionBox[RowBox[List["c", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", "p"]], RowBox[List["2", " ", "c"]]], Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[FractionBox[RowBox[List[RowBox[List["3", " ", "c"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", "p"]], RowBox[List["2", " ", "c"]]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation>  </semantics>  </mrow>  <mrow>  <mi> c </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> + </mo>  <mi> p </mi>  </mrow>  </mfrac>  <mo> + </mo>  <mfrac>  <mrow>  <msup>  <mi> ⅇ </mi>  <mrow>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> π </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> + </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> + </mo>  <mi> p </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 1 </mn>  <mo> , </mo>  <mfrac>  <mrow>  <mi> c </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> + </mo>  <mi> p </mi>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  </mrow>  <mo> ; </mo>  <mfrac>  <mrow>  <mrow>  <mn> 3 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> + </mo>  <mi> p </mi>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["1", Hypergeometric2F1], ",", TagBox[FractionBox[RowBox[List["c", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", "p"]], RowBox[List["2", " ", "c"]]], Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[FractionBox[RowBox[List[RowBox[List["3", " ", "c"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", "p"]], RowBox[List["2", " ", "c"]]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation>  </semantics>  </mrow>  <mrow>  <mi> c </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> + </mo>  <mi> p </mi>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mn> 2 </mn>  <mrow>  <mrow>  <mo> - </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mi> u </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> m </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mfrac>  <mi> m </mi>  <mn> 2 </mn>  </mfrac>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["m", Identity]], List[TagBox[FractionBox["m", "2"], Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <semantics>  <mrow>  <mi> m </mi>  <mo> ⁢ </mo>  <mi> mod </mi>  <mo> ⁢ </mo>  <mn> 2 </mn>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <rem />  <ci> $CellContext`m </ci>  <cn type='integer'> 2 </cn>  </apply>  </annotation-xml>  </semantics>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> s </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <mo> ⌊ </mo>  <mfrac>  <mrow>  <mi> u </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> ⌋ </mo>  </mrow>  </munderover>  <mrow>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> u </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mi> s </mi>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["u", Identity]], List[TagBox["s", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mfrac>  <mrow>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> + </mo>  <mi> p </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 1 </mn>  <mo> , </mo>  <mfrac>  <mrow>  <mi> c </mi>  <mo> + </mo>  <mi> p </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  </mrow>  <mo> ; </mo>  <mfrac>  <mrow>  <mrow>  <mn> 3 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  <mo> + </mo>  <mi> p </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["1", Hypergeometric2F1], ",", TagBox[FractionBox[RowBox[List["c", "+", "p", "-", RowBox[List["2", " ", "b", " ", "s"]], "+", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[FractionBox[RowBox[List[RowBox[List["3", " ", "c"]], "+", "p", "-", RowBox[List["2", " ", "b", " ", "s"]], "+", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation>  </semantics>  </mrow>  <mrow>  <mi> c </mi>  <mo> + </mo>  <mi> p </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  </mrow>  </mfrac>  <mo> + </mo>  <mfrac>  <mrow>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> + </mo>  <mi> p </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 1 </mn>  <mo> , </mo>  <mfrac>  <mrow>  <mi> c </mi>  <mo> + </mo>  <mi> p </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  </mrow>  <mo> ; </mo>  <mfrac>  <mrow>  <mrow>  <mn> 3 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  <mo> + </mo>  <mi> p </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["1", Hypergeometric2F1], ",", TagBox[FractionBox[RowBox[List["c", "+", "p", "+", RowBox[List["2", " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[FractionBox[RowBox[List[RowBox[List["3", " ", "c"]], "+", "p", "+", RowBox[List["2", " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation>  </semantics>  </mrow>  <mrow>  <mi> c </mi>  <mo> + </mo>  <mi> p </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mn> 2 </mn>  <mrow>  <mrow>  <mo> - </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mi> u </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> ⅈ </mi>  <mrow>  <mo> - </mo>  <mi> m </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <mo> ⌊ </mo>  <mfrac>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> ⌋ </mo>  </mrow>  </munderover>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mi> k </mi>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> m </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mi> k </mi>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["m", Identity]], List[TagBox["k", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> s </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <mo> ⌊ </mo>  <mfrac>  <mrow>  <mi> u </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> ⌋ </mo>  </mrow>  </munderover>  <mrow>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> u </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mi> s </mi>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["u", Identity]], List[TagBox["s", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> + </mo>  <mi> p </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 1 </mn>  <mo> , </mo>  <mfrac>  <mrow>  <mi> c </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> + </mo>  <mi> p </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  </mrow>  <mo> ; </mo>  <mfrac>  <mrow>  <mrow>  <mn> 3 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> + </mo>  <mi> p </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["1", Hypergeometric2F1], ",", TagBox[FractionBox[RowBox[List["c", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", "p", "-", RowBox[List["2", " ", "b", " ", "s"]], "+", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[FractionBox[RowBox[List[RowBox[List["3", " ", "c"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", "p", "-", RowBox[List["2", " ", "b", " ", "s"]], "+", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation>  </semantics>  </mrow>  <mo> ) </mo>  </mrow>  <mo> / </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> + </mo>  <mi> p </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> π </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> + </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> + </mo>  <mi> p </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 1 </mn>  <mo> , </mo>  <mfrac>  <mrow>  <mi> c </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> + </mo>  <mi> p </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  </mrow>  <mo> ; </mo>  <mfrac>  <mrow>  <mrow>  <mn> 3 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> + </mo>  <mi> p </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["1", Hypergeometric2F1], ",", TagBox[FractionBox[RowBox[List["c", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", "p", "-", RowBox[List["2", " ", "b", " ", "s"]], "+", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[FractionBox[RowBox[List[RowBox[List["3", " ", "c"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", "p", "-", RowBox[List["2", " ", "b", " ", "s"]], "+", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation>  </semantics>  </mrow>  <mo> ) </mo>  </mrow>  <mo> / </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> + </mo>  <mi> p </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> + </mo>  <mi> p </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 1 </mn>  <mo> , </mo>  <mfrac>  <mrow>  <mi> c </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> + </mo>  <mi> p </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  </mrow>  <mo> ; </mo>  <mfrac>  <mrow>  <mrow>  <mn> 3 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> + </mo>  <mi> p </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["1", Hypergeometric2F1], ",", TagBox[FractionBox[RowBox[List["c", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", "p", "+", RowBox[List["2", " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[FractionBox[RowBox[List[RowBox[List["3", " ", "c"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", "p", "+", RowBox[List["2", " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation>  </semantics>  </mrow>  <mo> ) </mo>  </mrow>  <mo> / </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> + </mo>  <mi> p </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> π </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> + </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> + </mo>  <mi> p </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 1 </mn>  <mo> , </mo>  <mfrac>  <mrow>  <mi> c </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> + </mo>  <mi> p </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  </mrow>  <mo> ; </mo>  <mfrac>  <mrow>  <mrow>  <mn> 3 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> + </mo>  <mi> p </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["1", Hypergeometric2F1], ",", TagBox[FractionBox[RowBox[List["c", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", "p", "+", RowBox[List["2", " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[FractionBox[RowBox[List[RowBox[List["3", " ", "c"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", "p", "+", RowBox[List["2", " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation>  </semantics>  </mrow>  <mo> ) </mo>  </mrow>  <mo> / </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> + </mo>  <mi> p </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mrow>  <mi> m </mi>  <mo> ∈ </mo>  <semantics>  <msup>  <mi> ℕ </mi>  <mo> + </mo>  </msup>  <annotation encoding='Mathematica'> TagBox[SuperscriptBox["\[DoubleStruckCapitalN]", "+"], Function[Integers]] </annotation>  </semantics>  </mrow>  <mo> ∧ </mo>  <mrow>  <mi> u </mi>  <mo> ∈ </mo>  <semantics>  <msup>  <mi> ℕ </mi>  <mo> + </mo>  </msup>  <annotation encoding='Mathematica'> TagBox[SuperscriptBox["\[DoubleStruckCapitalN]", "+"], Function[Integers]] </annotation>  </semantics>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <eq />  <apply>  <int />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <times />  <ci> p </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <sin />  <apply>  <times />  <ci> a </ci>  <ci> z </ci>  </apply>  </apply>  <ci> m </ci>  </apply>  <apply>  <power />  <apply>  <cosh />  <apply>  <times />  <ci> b </ci>  <ci> z </ci>  </apply>  </apply>  <ci> u </ci>  </apply>  <apply>  <sech />  <apply>  <times />  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <apply>  <power />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> u </ci>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <ci> p </ci>  </apply>  <ci> z </ci>  </apply>  </apply>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <rem />  <ci> $CellContext`m </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <rem />  <ci> $CellContext`u </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> c </ci>  <ci> p </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ci> Binomial </ci>  <ci> m </ci>  <apply>  <times />  <ci> m </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Binomial </ci>  <ci> u </ci>  <apply>  <times />  <ci> u </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Hypergeometric2F1 </ci>  <cn type='integer'> 1 </cn>  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <ci> p </ci>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <plus />  <apply>  <times />  <ci> p </ci>  <apply>  <power />  <ci> c </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> u </ci>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <ci> Binomial </ci>  <ci> u </ci>  <apply>  <times />  <ci> u </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <rem />  <ci> $CellContext`u </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> k </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <apply>  <floor />  <apply>  <times />  <apply>  <plus />  <ci> m </ci>  <cn type='integer'> -1 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </uplimit>  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  <apply>  <ci> Binomial </ci>  <ci> m </ci>  <ci> k </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> a </ci>  <ci> k </ci>  </apply>  </apply>  <apply>  <times />  <imaginaryi />  <ci> a </ci>  <ci> m </ci>  </apply>  <ci> p </ci>  </apply>  <ci> z </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> m </ci>  <pi />  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <ci> Hypergeometric2F1 </ci>  <cn type='integer'> 1 </cn>  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> a </ci>  <ci> k </ci>  </apply>  </apply>  <apply>  <times />  <imaginaryi />  <ci> a </ci>  <ci> m </ci>  </apply>  <ci> p </ci>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 3 </cn>  <ci> c </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> a </ci>  <ci> k </ci>  </apply>  </apply>  <apply>  <times />  <imaginaryi />  <ci> a </ci>  <ci> m </ci>  </apply>  <ci> p </ci>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> a </ci>  <ci> k </ci>  </apply>  </apply>  <apply>  <times />  <imaginaryi />  <ci> a </ci>  <ci> m </ci>  </apply>  <ci> p </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <plus />  <apply>  <times />  <imaginaryi />  <pi />  <ci> m </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> a </ci>  <ci> k </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> a </ci>  <ci> m </ci>  </apply>  </apply>  <ci> p </ci>  </apply>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <ci> Hypergeometric2F1 </ci>  <cn type='integer'> 1 </cn>  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> a </ci>  <ci> k </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> a </ci>  <ci> m </ci>  </apply>  </apply>  <ci> p </ci>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 3 </cn>  <ci> c </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> a </ci>  <ci> k </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> a </ci>  <ci> m </ci>  </apply>  </apply>  <ci> p </ci>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> a </ci>  <ci> k </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> a </ci>  <ci> m </ci>  </apply>  </apply>  <ci> p </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> u </ci>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <ci> Binomial </ci>  <ci> m </ci>  <apply>  <times />  <ci> m </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <rem />  <ci> $CellContext`m </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> s </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <apply>  <floor />  <apply>  <times />  <apply>  <plus />  <ci> u </ci>  <cn type='integer'> -1 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </uplimit>  <apply>  <times />  <apply>  <ci> Binomial </ci>  <ci> u </ci>  <ci> s </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <ci> p </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> s </ci>  </apply>  </apply>  <apply>  <times />  <ci> b </ci>  <ci> u </ci>  </apply>  </apply>  <ci> z </ci>  </apply>  </apply>  <apply>  <ci> Hypergeometric2F1 </ci>  <cn type='integer'> 1 </cn>  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <ci> p </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> s </ci>  </apply>  </apply>  <apply>  <times />  <ci> b </ci>  <ci> u </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 3 </cn>  <ci> c </ci>  </apply>  <ci> p </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> s </ci>  </apply>  </apply>  <apply>  <times />  <ci> b </ci>  <ci> u </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> c </ci>  <ci> p </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> s </ci>  </apply>  </apply>  <apply>  <times />  <ci> b </ci>  <ci> u </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <ci> p </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> b </ci>  <ci> u </ci>  </apply>  </apply>  </apply>  <ci> z </ci>  </apply>  </apply>  <apply>  <ci> Hypergeometric2F1 </ci>  <cn type='integer'> 1 </cn>  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <ci> p </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> b </ci>  <ci> u </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 3 </cn>  <ci> c </ci>  </apply>  <ci> p </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> b </ci>  <ci> u </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> c </ci>  <ci> p </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> b </ci>  <ci> u </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> u </ci>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <power />  <imaginaryi />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> m </ci>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> k </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <apply>  <floor />  <apply>  <times />  <apply>  <plus />  <ci> m </ci>  <cn type='integer'> -1 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </uplimit>  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  <apply>  <ci> Binomial </ci>  <ci> m </ci>  <ci> k </ci>  </apply>  <apply>  <sum />  <bvar>  <ci> s </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <apply>  <floor />  <apply>  <times />  <apply>  <plus />  <ci> u </ci>  <cn type='integer'> -1 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </uplimit>  <apply>  <times />  <apply>  <ci> Binomial </ci>  <ci> u </ci>  <ci> s </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> a </ci>  <ci> k </ci>  </apply>  </apply>  <apply>  <times />  <imaginaryi />  <ci> a </ci>  <ci> m </ci>  </apply>  <ci> p </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> s </ci>  </apply>  </apply>  <apply>  <times />  <ci> b </ci>  <ci> u </ci>  </apply>  </apply>  <ci> z </ci>  </apply>  </apply>  <apply>  <ci> Hypergeometric2F1 </ci>  <cn type='integer'> 1 </cn>  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> a </ci>  <ci> k </ci>  </apply>  </apply>  <apply>  <times />  <imaginaryi />  <ci> a </ci>  <ci> m </ci>  </apply>  <ci> p </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> s </ci>  </apply>  </apply>  <apply>  <times />  <ci> b </ci>  <ci> u </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 3 </cn>  <ci> c </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> a </ci>  <ci> k </ci>  </apply>  </apply>  <apply>  <times />  <imaginaryi />  <ci> a </ci>  <ci> m </ci>  </apply>  <ci> p </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> s </ci>  </apply>  </apply>  <apply>  <times />  <ci> b </ci>  <ci> u </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> a </ci>  <ci> k </ci>  </apply>  </apply>  <apply>  <times />  <imaginaryi />  <ci> a </ci>  <ci> m </ci>  </apply>  <ci> p </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> s </ci>  </apply>  </apply>  <apply>  <times />  <ci> b </ci>  <ci> u </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <plus />  <apply>  <times />  <imaginaryi />  <pi />  <ci> m </ci>  </apply>  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> a </ci>  <ci> k </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> a </ci>  <ci> m </ci>  </apply>  </apply>  <ci> p </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> s </ci>  </apply>  </apply>  <apply>  <times />  <ci> b </ci>  <ci> u </ci>  </apply>  </apply>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <ci> Hypergeometric2F1 </ci>  <cn type='integer'> 1 </cn>  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> a </ci>  <ci> k </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> a </ci>  <ci> m </ci>  </apply>  </apply>  <ci> p </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> s </ci>  </apply>  </apply>  <apply>  <times />  <ci> b </ci>  <ci> u </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 3 </cn>  <ci> c </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> a </ci>  <ci> k </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> a </ci>  <ci> m </ci>  </apply>  </apply>  <ci> p </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> s </ci>  </apply>  </apply>  <apply>  <times />  <ci> b </ci>  <ci> u </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> a </ci>  <ci> k </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> a </ci>  <ci> m </ci>  </apply>  </apply>  <ci> p </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> s </ci>  </apply>  </apply>  <apply>  <times />  <ci> b </ci>  <ci> u </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> a </ci>  <ci> k </ci>  </apply>  </apply>  <apply>  <times />  <imaginaryi />  <ci> a </ci>  <ci> m </ci>  </apply>  <ci> p </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> b </ci>  <ci> u </ci>  </apply>  </apply>  </apply>  <ci> z </ci>  </apply>  </apply>  <apply>  <ci> Hypergeometric2F1 </ci>  <cn type='integer'> 1 </cn>  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> a </ci>  <ci> k </ci>  </apply>  </apply>  <apply>  <times />  <imaginaryi />  <ci> a </ci>  <ci> m </ci>  </apply>  <ci> p </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> b </ci>  <ci> u </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 3 </cn>  <ci> c </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> a </ci>  <ci> k </ci>  </apply>  </apply>  <apply>  <times />  <imaginaryi />  <ci> a </ci>  <ci> m </ci>  </apply>  <ci> p </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> b </ci>  <ci> u </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> a </ci>  <ci> k </ci>  </apply>  </apply>  <apply>  <times />  <imaginaryi />  <ci> a </ci>  <ci> m </ci>  </apply>  <ci> p </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> b </ci>  <ci> u </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <plus />  <apply>  <times />  <imaginaryi />  <pi />  <ci> m </ci>  </apply>  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> a </ci>  <ci> k </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> a </ci>  <ci> m </ci>  </apply>  </apply>  <ci> p </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> b </ci>  <ci> u </ci>  </apply>  </apply>  </apply>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <ci> Hypergeometric2F1 </ci>  <cn type='integer'> 1 </cn>  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> a </ci>  <ci> k </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> a </ci>  <ci> m </ci>  </apply>  </apply>  <ci> p </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> b </ci>  <ci> u </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 3 </cn>  <ci> c </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> a </ci>  <ci> k </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> a </ci>  <ci> m </ci>  </apply>  </apply>  <ci> p </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> b </ci>  <ci> u </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> a </ci>  <ci> k </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> a </ci>  <ci> m </ci>  </apply>  </apply>  <ci> p </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> b </ci>  <ci> u </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <and />  <apply>  <in />  <ci> m </ci>  <integers />  </apply>  <apply>  <in />  <ci> u </ci>  <integers />  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["p_", " ", "z_"]]], " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["a_", " ", "z_"]], "]"]], "m_"], " ", SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List["b_", " ", "z_"]], "]"]], "u_"], " ", RowBox[List["Sech", "[", RowBox[List["c_", " ", "z_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List["1", "-", "m", "-", "u"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["c", "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["u", ",", FractionBox["u", "2"]]], "]"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List["1", ",", FractionBox[RowBox[List["c", "+", "p"]], RowBox[List["2", " ", "c"]]], ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["3", "+", FractionBox["p", "c"]]], ")"]]]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["u", ",", "2"]], "]"]]]], ")"]]]], RowBox[List["c", "+", "p"]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List["1", "-", "m", "-", "u"]]], " ", RowBox[List["Binomial", "[", RowBox[List["u", ",", FractionBox["u", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["u", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", "m", " ", "\[Pi]"]], "2"], "+", RowBox[List[RowBox[List["(", RowBox[List["c", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", "p"]], ")"]], " ", "z"]]]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List["1", ",", FractionBox[RowBox[List["c", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", "p"]], RowBox[List["2", " ", "c"]]], ",", FractionBox[RowBox[List[RowBox[List["3", " ", "c"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", "p"]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], RowBox[List["c", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", "p"]]], "+", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", "\[ImaginaryI]", " ", "m", " ", "\[Pi]"]], "+", RowBox[List[RowBox[List["(", RowBox[List["c", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", "p"]], ")"]], " ", "z"]]]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List["1", ",", FractionBox[RowBox[List["c", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", "p"]], RowBox[List["2", " ", "c"]]], ",", FractionBox[RowBox[List[RowBox[List["3", " ", "c"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", "p"]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], RowBox[List["c", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", "p"]]]]], ")"]]]]]]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List["1", "-", "m", "-", "u"]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "u"]], ")"]]]], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["u", ",", "s"]], "]"]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["c", "+", "p", "+", RowBox[List["2", " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "u"]]]], ")"]], " ", "z"]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List["1", ",", FractionBox[RowBox[List["c", "+", "p", "+", RowBox[List["2", " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], ",", FractionBox[RowBox[List[RowBox[List["3", " ", "c"]], "+", "p", "+", RowBox[List["2", " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], RowBox[List["c", "+", "p", "+", RowBox[List["2", " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "u"]]]]], "+", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["c", "+", "p", "-", RowBox[List["2", " ", "b", " ", "s"]], "+", RowBox[List["b", " ", "u"]]]], ")"]], " ", "z"]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List["1", ",", FractionBox[RowBox[List["c", "+", "p", "-", RowBox[List["2", " ", "b", " ", "s"]], "+", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], ",", FractionBox[RowBox[List[RowBox[List["3", " ", "c"]], "+", "p", "-", RowBox[List["2", " ", "b", " ", "s"]], "+", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], RowBox[List["c", "+", "p", "-", RowBox[List["2", " ", "b", " ", "s"]], "+", RowBox[List["b", " ", "u"]]]]]]], ")"]]]]]]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List["1", "-", "m", "-", "u"]]], " ", SuperscriptBox["\[ImaginaryI]", RowBox[List["-", "m"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "u"]], ")"]]]], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["u", ",", "s"]], "]"]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "m", " ", "\[Pi]"]], "+", RowBox[List[RowBox[List["(", RowBox[List["c", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", "p", "+", RowBox[List["2", " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "u"]]]], ")"]], " ", "z"]]]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List["1", ",", FractionBox[RowBox[List["c", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", "p", "+", RowBox[List["2", " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], ",", FractionBox[RowBox[List[RowBox[List["3", " ", "c"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", "p", "+", RowBox[List["2", " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], RowBox[List["c", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", "p", "+", RowBox[List["2", " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "u"]]]]], "+", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["c", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", "p", "+", RowBox[List["2", " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "u"]]]], ")"]], " ", "z"]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List["1", ",", FractionBox[RowBox[List["c", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", "p", "+", RowBox[List["2", " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], ",", FractionBox[RowBox[List[RowBox[List["3", " ", "c"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", "p", "+", RowBox[List["2", " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], RowBox[List["c", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", "p", "+", RowBox[List["2", " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "u"]]]]], "+", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "m", " ", "\[Pi]"]], "+", RowBox[List[RowBox[List["(", RowBox[List["c", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", "p", "-", RowBox[List["2", " ", "b", " ", "s"]], "+", RowBox[List["b", " ", "u"]]]], ")"]], " ", "z"]]]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List["1", ",", FractionBox[RowBox[List["c", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", "p", "-", RowBox[List["2", " ", "b", " ", "s"]], "+", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], ",", FractionBox[RowBox[List[RowBox[List["3", " ", "c"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", "p", "-", RowBox[List["2", " ", "b", " ", "s"]], "+", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], RowBox[List["c", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", "p", "-", RowBox[List["2", " ", "b", " ", "s"]], "+", RowBox[List["b", " ", "u"]]]]], "+", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["c", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", "p", "-", RowBox[List["2", " ", "b", " ", "s"]], "+", RowBox[List["b", " ", "u"]]]], ")"]], " ", "z"]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List["1", ",", FractionBox[RowBox[List["c", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", "p", "-", RowBox[List["2", " ", "b", " ", "s"]], "+", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], ",", FractionBox[RowBox[List[RowBox[List["3", " ", "c"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", "p", "-", RowBox[List["2", " ", "b", " ", "s"]], "+", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], RowBox[List["c", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", "p", "-", RowBox[List["2", " ", "b", " ", "s"]], "+", RowBox[List["b", " ", "u"]]]]]]], ")"]]]]]]]]]]]]]], "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", ">", "0"]], "&&", RowBox[List["u", "\[Element]", "Integers"]], "&&", RowBox[List["u", ">", "0"]]]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |