  
| 
 | 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   http://functions.wolfram.com/01.24.21.0268.01
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
 | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
    Integrate[z^n Sin[a z]^m Sinh[b z]^u Sech[c z], z] == 
  I^u 2^(1 - m - u) E^(c z) Binomial[m, m/2] Binomial[u, u/2] n! 
    (1 - Mod[m, 2]) (1 - Mod[u, 2]) 
    Sum[(((-1)^j z^(-j + n) c^(-1 - j))/(-j + n)!) HypergeometricPFQ[
       {Subscript[a, 1], \[Ellipsis], Subscript[a, j + 1], 1}, 
       {1 + Subscript[a, 1], \[Ellipsis], 1 + Subscript[a, j + 1]}, 
       -E^(2 c z)], {j, 0, n}] + 2^(1 - m - u) I^(m + u) Binomial[u, u/2] 
    (1 - Mod[u, 2]) n! E^(c z) Sum[(-1)^k Binomial[m, k] 
      (Sum[(((-1)^j z^(-j + n) (I a (2 k - m) + c)^(-1 - j))/(-j + n)!) 
          HypergeometricPFQ[{Subscript[b, 1], \[Ellipsis], 
            Subscript[b, j + 1], 1}, {1 + Subscript[b, 1], \[Ellipsis], 
            1 + Subscript[b, j + 1]}, -E^(2 c z)], {j, 0, n}]/
        E^((I a (-2 k + m)) z) + (-1)^m E^((I a (-2 k + m)) z) 
        Sum[(((-1)^j z^(-j + n) (I a (-2 k + m) + c)^(-1 - j))/(-j + n)!) 
          HypergeometricPFQ[{Subscript[c, 1], \[Ellipsis], 
            Subscript[c, j + 1], 1}, {1 + Subscript[c, 1], \[Ellipsis], 
            1 + Subscript[c, j + 1]}, -E^(2 c z)], {j, 0, n}]), 
     {k, 0, Floor[(1/2) (-1 + m)]}] + 2^(1 - m - u) Binomial[m, m/2] 
    (1 - Mod[m, 2]) n! E^(c z) Sum[(-1)^s Binomial[u, s] 
      (((-1)^u Sum[(((-1)^j z^(-j + n) ((-b) (-2 s + u) + c)^(-1 - j))/
            (-j + n)!) HypergeometricPFQ[{Subscript[d, 1], \[Ellipsis], 
             Subscript[d, j + 1], 1}, {1 + Subscript[d, 1], \[Ellipsis], 
             1 + Subscript[d, j + 1]}, -E^(2 c z)], {j, 0, n}])/
        E^((b (-2 s + u)) z) + E^((b (-2 s + u)) z) 
        Sum[(((-1)^j z^(-j + n) (b (-2 s + u) + c)^(-1 - j))/(-j + n)!) 
          HypergeometricPFQ[{Subscript[e, 1], \[Ellipsis], 
            Subscript[e, j + 1], 1}, {1 + Subscript[e, 1], \[Ellipsis], 
            1 + Subscript[e, j + 1]}, -E^(2 c z)], {j, 0, n}]), 
     {s, 0, Floor[(1/2) (-1 + u)]}] + 2^(1 - m - u) n! E^(c z) 
    Sum[(-1)^k Binomial[m, k] Sum[(-1)^s Binomial[u, s] 
        ((-1)^u E^((I m Pi)/2 + ((-I) a (-2 k + m) - b (-2 s + u)) z) 
          Sum[(((-1)^j z^(-j + n) ((-I) a (-2 k + m) - b (-2 s + u) + c)^(
                -1 - j))/(-j + n)!) HypergeometricPFQ[{Subscript[f, 1], 
              \[Ellipsis], Subscript[f, j + 1], 1}, {1 + Subscript[f, 1], 
              \[Ellipsis], 1 + Subscript[f, j + 1]}, -E^(2 c z)], 
           {j, 0, n}] + (-1)^u E^((-(1/2)) I m Pi + 
            (I a (-2 k + m) - b (-2 s + u)) z) 
          Sum[(((-1)^j z^(-j + n) (I a (-2 k + m) - b (-2 s + u) + c)^(-1 - 
                j))/(-j + n)!) HypergeometricPFQ[{Subscript[g, 1], 
              \[Ellipsis], Subscript[g, j + 1], 1}, {1 + Subscript[g, 1], 
              \[Ellipsis], 1 + Subscript[g, j + 1]}, -E^(2 c z)], 
           {j, 0, n}] + E^((I m Pi)/2 + ((-I) a (-2 k + m) + b (-2 s + u)) z) 
          Sum[(((-1)^j z^(-j + n) ((-I) a (-2 k + m) + b (-2 s + u) + c)^(
                -1 - j))/(-j + n)!) HypergeometricPFQ[{Subscript[h, 1], 
              \[Ellipsis], Subscript[h, j + 1], 1}, {1 + Subscript[h, 1], 
              \[Ellipsis], 1 + Subscript[h, j + 1]}, -E^(2 c z)], 
           {j, 0, n}] + E^((-(1/2)) I m Pi + (I a (-2 k + m) + b (-2 s + u)) 
             z) Sum[(((-1)^j z^(-j + n) (I a (-2 k + m) + b (-2 s + u) + c)^(
                -1 - j))/(-j + n)!) HypergeometricPFQ[{Subscript[q, 1], 
              \[Ellipsis], Subscript[q, j + 1], 1}, {1 + Subscript[q, 1], 
              \[Ellipsis], 1 + Subscript[q, j + 1]}, -E^(2 c z)], 
           {j, 0, n}]), {s, 0, Floor[(1/2) (-1 + u)]}], 
     {k, 0, Floor[(1/2) (-1 + m)]}] /; 
 Subscript[a, 1] == Subscript[a, 2] == \[Ellipsis] == Subscript[a, n + 1] == 
   1/2 && Subscript[b, 1] == Subscript[b, 2] == \[Ellipsis] == 
   Subscript[b, n + 1] == (c + I a (2 k - m))/(2 c) && 
  Subscript[c, 1] == Subscript[c, 2] == \[Ellipsis] == Subscript[c, n + 1] == 
   (c + I a (-2 k + m))/(2 c) && Subscript[d, 1] == Subscript[d, 2] == 
   \[Ellipsis] == Subscript[d, n + 1] == (c - b (-2 s + u))/(2 c) && 
  Subscript[e, 1] == Subscript[e, 2] == \[Ellipsis] == Subscript[e, n + 1] == 
   (c + b (-2 s + u))/(2 c) && Subscript[f, 1] == Subscript[f, 2] == 
   \[Ellipsis] == Subscript[f, n + 1] == (2 I a k - I a m + 2 b s - b u + c)/
    (2 c) && Subscript[g, 1] == Subscript[g, 2] == \[Ellipsis] == 
   Subscript[g, n + 1] == (I a (-2 k + m) + b (2 s - u) + c)/(2 c) && 
  Subscript[h, 1] == Subscript[h, 2] == \[Ellipsis] == Subscript[h, n + 1] == 
   ((-I) a (-2 k + m) + b (-2 s + u) + c)/(2 c) && 
  Subscript[q, 1] == Subscript[q, 2] == \[Ellipsis] == Subscript[q, n + 1] == 
   (I a (-2 k + m) + b (-2 s + u) + c)/(2 c) && Element[n, Integers] && 
  n >= 0 && Element[m, Integers] && m > 0 && Element[u, Integers] && u > 0 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["z", "n"], SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["a", " ", "z"]], "]"]], "m"], SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List["b", " ", "z"]], "]"]], "u"], RowBox[List["Sech", "[", RowBox[List["c", " ", "z"]], "]"]], " ", RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List[SuperscriptBox["\[ImaginaryI]", "u"], " ", SuperscriptBox["2", RowBox[List["1", "-", "m", "-", "u"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]], RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["u", ",", FractionBox["u", "2"]]], "]"]], " ", RowBox[List["n", "!"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["u", ",", "2"]], "]"]]]], ")"]], "  ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", SuperscriptBox["c", RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " "]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["a", RowBox[List["j", "+", "1"]]], ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["a", "1"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "+", SubscriptBox["a", RowBox[List["j", "+", "1"]]]]]]], "}"]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]]]]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List["1", "-", "m", "-", "u"]]], SuperscriptBox["\[ImaginaryI]", RowBox[List["m", "+", "u"]]], " ", RowBox[List["Binomial", "[", RowBox[List["u", ",", FractionBox["u", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["u", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List["n", "!"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", "c"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["b", RowBox[List["j", "+", "1"]]], ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["b", "1"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "+", SubscriptBox["b", RowBox[List["j", "+", "1"]]]]]]], "}"]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]]]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "m"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "c"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["c", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["c", RowBox[List["j", "+", "1"]]], ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["c", "1"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "+", SubscriptBox["c", RowBox[List["j", "+", "1"]]]]]]], "}"]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]]]]]]]], ")"]]]]]]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List["1", "-", "m", "-", "u"]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List["n", "!"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "u"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "s"], " ", RowBox[List["Binomial", "[", RowBox[List["u", ",", "s"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "u"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "u"]], ")"]]]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "u"]], ")"]]]], "+", "c"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " "]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["d", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["d", RowBox[List["j", "+", "1"]]], ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["d", "1"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "+", SubscriptBox["d", RowBox[List["j", "+", "1"]]]]]]], "}"]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "u"]], ")"]]]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "u"]], ")"]]]], "+", "c"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " "]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["e", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["e", RowBox[List["j", "+", "1"]]], ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["e", "1"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "+", SubscriptBox["e", RowBox[List["j", "+", "1"]]]]]]], "}"]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]]]]]]]], ")"]]]]]]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List["1", "-", "m", "-", "u"]]], " ", RowBox[List["n", "!"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "u"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "s"], " ", RowBox[List["Binomial", "[", RowBox[List["u", ",", "s"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "u"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", "m", " ", "\[Pi]"]], "2"], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "-", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "u"]], ")"]]]]]], ")"]], " ", "z"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "-", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "u"]], ")"]]]], "+", "c"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " "]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["f", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["f", RowBox[List["j", "+", "1"]]], ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["f", "1"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "+", SubscriptBox["f", RowBox[List["j", "+", "1"]]]]]]], "}"]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]]]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "u"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", "\[ImaginaryI]", " ", "m", " ", "\[Pi]"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "-", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "u"]], ")"]]]]]], ")"]], " ", "z"]]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "-", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "u"]], ")"]]]], "+", "c"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " "]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["g", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["g", RowBox[List["j", "+", "1"]]], ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["g", "1"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "+", SubscriptBox["g", RowBox[List["j", "+", "1"]]]]]]], "}"]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", "m", " ", "\[Pi]"]], "2"], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "u"]], ")"]]]]]], ")"]], " ", "z"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "u"]], ")"]]]], "+", "c"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " "]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["h", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["h", RowBox[List["j", "+", "1"]]], ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["h", "1"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "+", SubscriptBox["h", RowBox[List["j", "+", "1"]]]]]]], "}"]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", "\[ImaginaryI]", " ", "m", " ", "\[Pi]"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "u"]], ")"]]]]]], ")"]], " ", "z"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "u"]], ")"]]]], "+", "c"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]], " "]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["q", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["q", RowBox[List["j", "+", "1"]]], ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["q", "1"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "+", SubscriptBox["q", RowBox[List["j", "+", "1"]]]]]]], "}"]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]]]]]]]], ")"]]]]]]]]]]]]]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["a", "1"], "\[Equal]", SubscriptBox["a", "2"], "\[Equal]", "\[Ellipsis]", "\[Equal]", SubscriptBox["a", RowBox[List["n", "+", "1"]]], "\[Equal]", FractionBox["1", "2"]]], "\[And]", RowBox[List[SubscriptBox["b", "1"], "\[Equal]", SubscriptBox["b", "2"], "\[Equal]", "\[Ellipsis]", "\[Equal]", SubscriptBox["b", RowBox[List["n", "+", "1"]]], "\[Equal]", FractionBox[RowBox[List["c", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]]]], RowBox[List["2", " ", "c"]]]]], "\[And]", RowBox[List[SubscriptBox["c", "1"], "\[Equal]", SubscriptBox["c", "2"], "\[Equal]", "\[Ellipsis]", "\[Equal]", SubscriptBox["c", RowBox[List["n", "+", "1"]]], "\[Equal]", FractionBox[RowBox[List["c", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]]]], RowBox[List["2", " ", "c"]]]]], "\[And]", RowBox[List[SubscriptBox["d", "1"], "\[Equal]", SubscriptBox["d", "2"], "\[Equal]", "\[Ellipsis]", "\[Equal]", SubscriptBox["d", RowBox[List["n", "+", "1"]]], "\[Equal]", FractionBox[RowBox[List["c", "-", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "u"]], ")"]]]]]], RowBox[List["2", " ", "c"]]]]], "\[And]", RowBox[List[SubscriptBox["e", "1"], "\[Equal]", SubscriptBox["e", "2"], "\[Equal]", "\[Ellipsis]", "\[Equal]", SubscriptBox["e", RowBox[List["n", "+", "1"]]], "\[Equal]", FractionBox[RowBox[List["c", "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "u"]], ")"]]]]]], RowBox[List["2", " ", "c"]]]]], "\[And]", RowBox[List[SubscriptBox["f", "1"], "\[Equal]", SubscriptBox["f", "2"], "\[Equal]", "\[Ellipsis]", "\[Equal]", SubscriptBox["f", RowBox[List["n", "+", "1"]]], "\[Equal]", FractionBox[RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", RowBox[List["2", " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "u"]], "+", "c"]], RowBox[List["2", " ", "c"]]]]], "\[And]", RowBox[List[SubscriptBox["g", "1"], "\[Equal]", SubscriptBox["g", "2"], "\[Equal]", "\[Ellipsis]", "\[Equal]", SubscriptBox["g", RowBox[List["n", "+", "1"]]], "\[Equal]", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "s"]], "-", "u"]], ")"]]]], "+", "c"]], RowBox[List["2", " ", "c"]]]]], "\[And]", RowBox[List[SubscriptBox["h", "1"], "\[Equal]", SubscriptBox["h", "2"], "\[Equal]", "\[Ellipsis]", "\[Equal]", SubscriptBox["h", RowBox[List["n", "+", "1"]]], "\[Equal]", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "u"]], ")"]]]], "+", "c"]], RowBox[List["2", " ", "c"]]]]], "\[And]", RowBox[List[SubscriptBox["q", "1"], "\[Equal]", SubscriptBox["q", "2"], "\[Equal]", "\[Ellipsis]", "\[Equal]", SubscriptBox["q", RowBox[List["n", "+", "1"]]], "\[Equal]", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "u"]], ")"]]]], "+", "c"]], RowBox[List["2", " ", "c"]]]]], "\[And]", RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]], "\[And]", RowBox[List["m", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", ">", "0"]], "\[And]", RowBox[List["u", "\[Element]", "Integers"]], "\[And]", RowBox[List["u", ">", "0"]]]]]]]] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
 
  | 
   
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <mo> ∫ </mo>  <mrow>  <mrow>  <msup>  <mi> z </mi>  <mi> n </mi>  </msup>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> sin </mi>  <mi> m </mi>  </msup>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> sinh </mi>  <mi> u </mi>  </msup>  <mo> ( </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> sech </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ⅆ </mo>  <mi> z </mi>  </mrow>  </mrow>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mrow>  <msup>  <mi> ⅈ </mi>  <mi> u </mi>  </msup>  <mo> ⁢ </mo>  <msup>  <mn> 2 </mn>  <mrow>  <mrow>  <mo> - </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mi> u </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> m </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mfrac>  <mi> m </mi>  <mn> 2 </mn>  </mfrac>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["m", Identity, Rule[Editable, True]]], List[TagBox[FractionBox["m", "2"], Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation>  </semantics>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> u </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mfrac>  <mi> u </mi>  <mn> 2 </mn>  </mfrac>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["u", Identity, Rule[Editable, True]]], List[TagBox[FractionBox["u", "2"], Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <mi> n </mi>  <mo> ! </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <semantics>  <mrow>  <mi> m </mi>  <mo> ⁢ </mo>  <mi> mod </mi>  <mo> ⁢ </mo>  <mn> 2 </mn>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <rem />  <ci> $CellContext`m </ci>  <cn type='integer'> 2 </cn>  </apply>  </annotation-xml>  </semantics>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <semantics>  <mrow>  <mi> u </mi>  <mo> ⁢ </mo>  <mi> mod </mi>  <mo> ⁢ </mo>  <mn> 2 </mn>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <rem />  <ci> $CellContext`u </ci>  <cn type='integer'> 2 </cn>  </apply>  </annotation-xml>  </semantics>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> n </mi>  </munderover>  <mrow>  <mfrac>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mi> j </mi>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mi> j </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> c </mi>  <mrow>  <mrow>  <mo> - </mo>  <mi> j </mi>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  <mtext>   </mtext>  </mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mi> j </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ! </mo>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mrow>  <mi> j </mi>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  </msub>  <msub>  <mi> F </mi>  <mrow>  <mi> j </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> , </mo>  <mn> 1 </mn>  </mrow>  <mo> ; </mo>  <mrow>  <mfrac>  <mn> 3 </mn>  <mn> 2 </mn>  </mfrac>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mfrac>  <mn> 3 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox[RowBox[List["j", "+", "2"]], TraditionalForm]], SubscriptBox["F", FormBox[RowBox[List["j", "+", "1"]], TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox["1", "2"], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[FractionBox["1", "2"], HypergeometricPFQ], ",", TagBox["1", HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[TagBox[RowBox[List[TagBox[FractionBox["3", "2"], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[FractionBox["3", "2"], HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], HypergeometricPFQ]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], HypergeometricPFQ] </annotation>  </semantics>  </mrow>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mn> 2 </mn>  <mrow>  <mrow>  <mo> - </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mi> u </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> ⅈ </mi>  <mrow>  <mi> m </mi>  <mo> + </mo>  <mi> u </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> u </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mfrac>  <mi> u </mi>  <mn> 2 </mn>  </mfrac>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["u", Identity, Rule[Editable, True]]], List[TagBox[FractionBox["u", "2"], Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <semantics>  <mrow>  <mi> u </mi>  <mo> ⁢ </mo>  <mi> mod </mi>  <mo> ⁢ </mo>  <mn> 2 </mn>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <rem />  <ci> $CellContext`u </ci>  <cn type='integer'> 2 </cn>  </apply>  </annotation-xml>  </semantics>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> n </mi>  <mo> ! </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <mo> ⌊ </mo>  <mfrac>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> ⌋ </mo>  </mrow>  </munderover>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mi> k </mi>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> m </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mi> k </mi>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["m", Identity, Rule[Editable, True]]], List[TagBox["k", Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> ⅈ </mi>  </mrow>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> n </mi>  </munderover>  <mrow>  <mfrac>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mi> j </mi>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mi> j </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> + </mo>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> - </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> j </mi>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  <mtext>   </mtext>  </mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mi> j </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ! </mo>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mrow>  <mi> j </mi>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  </msub>  <msub>  <mi> F </mi>  <mrow>  <mi> j </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <mi> c </mi>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> - </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mfrac>  <mrow>  <mi> c </mi>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> - </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> , </mo>  <mn> 1 </mn>  </mrow>  <mo> ; </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <mi> c </mi>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> - </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mrow>  <mfrac>  <mrow>  <mi> c </mi>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> - </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mrow>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox[RowBox[List["j", "+", "2"]], TraditionalForm]], SubscriptBox["F", FormBox[RowBox[List["j", "+", "1"]], TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List["c", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]]]], RowBox[List["2", " ", "c"]]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[FractionBox[RowBox[List["c", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]]]], RowBox[List["2", " ", "c"]]], HypergeometricPFQ], ",", TagBox["1", HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox[RowBox[List["c", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]]]], RowBox[List["2", " ", "c"]]], "+", "1"]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[RowBox[List[FractionBox[RowBox[List["c", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]]]], RowBox[List["2", " ", "c"]]], "+", "1"]], HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], HypergeometricPFQ]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], HypergeometricPFQ] </annotation>  </semantics>  </mrow>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mi> m </mi>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> n </mi>  </munderover>  <mrow>  <mfrac>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mi> j </mi>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mi> j </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> + </mo>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> j </mi>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  <mtext>   </mtext>  </mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mi> j </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ! </mo>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mrow>  <mi> j </mi>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  </msub>  <msub>  <mi> F </mi>  <mrow>  <mi> j </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <mi> c </mi>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mfrac>  <mrow>  <mi> c </mi>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> , </mo>  <mn> 1 </mn>  </mrow>  <mo> ; </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <mi> c </mi>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mrow>  <mfrac>  <mrow>  <mi> c </mi>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mrow>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox[RowBox[List["j", "+", "2"]], TraditionalForm]], SubscriptBox["F", FormBox[RowBox[List["j", "+", "1"]], TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List["c", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "k"]]]], ")"]]]]]], RowBox[List["2", " ", "c"]]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[FractionBox[RowBox[List["c", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "k"]]]], ")"]]]]]], RowBox[List["2", " ", "c"]]], HypergeometricPFQ], ",", TagBox["1", HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox[RowBox[List["c", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "k"]]]], ")"]]]]]], RowBox[List["2", " ", "c"]]], "+", "1"]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[RowBox[List[FractionBox[RowBox[List["c", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "k"]]]], ")"]]]]]], RowBox[List["2", " ", "c"]]], "+", "1"]], HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], HypergeometricPFQ]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], HypergeometricPFQ] </annotation>  </semantics>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mn> 2 </mn>  <mrow>  <mrow>  <mo> - </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mi> u </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> m </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mfrac>  <mi> m </mi>  <mn> 2 </mn>  </mfrac>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["m", Identity, Rule[Editable, True]]], List[TagBox[FractionBox["m", "2"], Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <semantics>  <mrow>  <mi> m </mi>  <mo> ⁢ </mo>  <mi> mod </mi>  <mo> ⁢ </mo>  <mn> 2 </mn>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <rem />  <ci> $CellContext`m </ci>  <cn type='integer'> 2 </cn>  </apply>  </annotation-xml>  </semantics>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> n </mi>  <mo> ! </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> s </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <mo> ⌊ </mo>  <mfrac>  <mrow>  <mi> u </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> ⌋ </mo>  </mrow>  </munderover>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mi> s </mi>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> u </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mi> s </mi>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["u", Identity, Rule[Editable, True]]], List[TagBox["s", Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mi> u </mi>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> b </mi>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> u </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> n </mi>  </munderover>  <mrow>  <mfrac>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mi> j </mi>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mi> j </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> - </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> u </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> j </mi>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  <mtext>   </mtext>  </mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mi> j </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ! </mo>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mrow>  <mi> j </mi>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  </msub>  <msub>  <mi> F </mi>  <mrow>  <mi> j </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <mi> c </mi>  <mo> - </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> u </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mfrac>  <mrow>  <mi> c </mi>  <mo> - </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> u </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> , </mo>  <mn> 1 </mn>  </mrow>  <mo> ; </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <mi> c </mi>  <mo> - </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> u </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mrow>  <mfrac>  <mrow>  <mi> c </mi>  <mo> - </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> u </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mrow>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox[RowBox[List["j", "+", "2"]], TraditionalForm]], SubscriptBox["F", FormBox[RowBox[List["j", "+", "1"]], TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List["c", "-", RowBox[List["b", " ", RowBox[List["(", RowBox[List["u", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], RowBox[List["2", " ", "c"]]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[FractionBox[RowBox[List["c", "-", RowBox[List["b", " ", RowBox[List["(", RowBox[List["u", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], RowBox[List["2", " ", "c"]]], HypergeometricPFQ], ",", TagBox["1", HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox[RowBox[List["c", "-", RowBox[List["b", " ", RowBox[List["(", RowBox[List["u", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], RowBox[List["2", " ", "c"]]], "+", "1"]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[RowBox[List[FractionBox[RowBox[List["c", "-", RowBox[List["b", " ", RowBox[List["(", RowBox[List["u", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], RowBox[List["2", " ", "c"]]], "+", "1"]], HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], HypergeometricPFQ]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], HypergeometricPFQ] </annotation>  </semantics>  </mrow>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> u </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> n </mi>  </munderover>  <mrow>  <mfrac>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mi> j </mi>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mi> j </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> u </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> j </mi>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  <mtext>   </mtext>  </mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mi> j </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ! </mo>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mrow>  <mi> j </mi>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  </msub>  <msub>  <mi> F </mi>  <mrow>  <mi> j </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <mi> c </mi>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> u </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mfrac>  <mrow>  <mi> c </mi>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> u </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> , </mo>  <mn> 1 </mn>  </mrow>  <mo> ; </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <mi> c </mi>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> u </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mrow>  <mfrac>  <mrow>  <mi> c </mi>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> u </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mrow>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox[RowBox[List["j", "+", "2"]], TraditionalForm]], SubscriptBox["F", FormBox[RowBox[List["j", "+", "1"]], TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List["c", "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List["u", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], RowBox[List["2", " ", "c"]]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[FractionBox[RowBox[List["c", "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List["u", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], RowBox[List["2", " ", "c"]]], HypergeometricPFQ], ",", TagBox["1", HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox[RowBox[List["c", "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List["u", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], RowBox[List["2", " ", "c"]]], "+", "1"]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[RowBox[List[FractionBox[RowBox[List["c", "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List["u", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], RowBox[List["2", " ", "c"]]], "+", "1"]], HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], HypergeometricPFQ]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], HypergeometricPFQ] </annotation>  </semantics>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mn> 2 </mn>  <mrow>  <mrow>  <mo> - </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mi> u </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mi> n </mi>  <mo> ! </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <mo> ⌊ </mo>  <mfrac>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> ⌋ </mo>  </mrow>  </munderover>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mi> k </mi>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> m </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mi> k </mi>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["m", Identity, Rule[Editable, True]]], List[TagBox["k", Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> s </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <mo> ⌊ </mo>  <mfrac>  <mrow>  <mi> u </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> ⌋ </mo>  </mrow>  </munderover>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mi> s </mi>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> u </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mi> s </mi>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["u", Identity, Rule[Editable, True]]], List[TagBox["s", Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mi> u </mi>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> u </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> m </mi>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  <mn> 2 </mn>  </mfrac>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> n </mi>  </munderover>  <mrow>  <mfrac>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mi> j </mi>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mi> j </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> + </mo>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> u </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> j </mi>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  <mtext>   </mtext>  </mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mi> j </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ! </mo>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mrow>  <mi> j </mi>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  </msub>  <msub>  <mi> F </mi>  <mrow>  <mi> j </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <mi> c </mi>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mi> u </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mfrac>  <mrow>  <mi> c </mi>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mi> u </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> , </mo>  <mn> 1 </mn>  </mrow>  <mo> ; </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <mi> c </mi>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mi> u </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mrow>  <mfrac>  <mrow>  <mi> c </mi>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mi> u </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mrow>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox[RowBox[List["j", "+", "2"]], TraditionalForm]], SubscriptBox["F", FormBox[RowBox[List["j", "+", "1"]], TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List["c", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "k"]]]], ")"]]]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "s"]], "-", "u"]], ")"]]]]]], RowBox[List["2", " ", "c"]]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[FractionBox[RowBox[List["c", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "k"]]]], ")"]]]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "s"]], "-", "u"]], ")"]]]]]], RowBox[List["2", " ", "c"]]], HypergeometricPFQ], ",", TagBox["1", HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox[RowBox[List["c", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "k"]]]], ")"]]]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "s"]], "-", "u"]], ")"]]]]]], RowBox[List["2", " ", "c"]]], "+", "1"]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[RowBox[List[FractionBox[RowBox[List["c", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "k"]]]], ")"]]]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "s"]], "-", "u"]], ")"]]]]]], RowBox[List["2", " ", "c"]]], "+", "1"]], HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], HypergeometricPFQ]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], HypergeometricPFQ] </annotation>  </semantics>  </mrow>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mi> u </mi>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> π </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> + </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> u </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> n </mi>  </munderover>  <mrow>  <mfrac>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mi> j </mi>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mi> j </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> u </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> j </mi>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  <mtext>   </mtext>  </mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mi> j </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ! </mo>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mrow>  <mi> j </mi>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  </msub>  <msub>  <mi> F </mi>  <mrow>  <mi> j </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <mi> c </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mfrac>  <mrow>  <mi> c </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> , </mo>  <mn> 1 </mn>  </mrow>  <mo> ; </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <mi> c </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mrow>  <mfrac>  <mrow>  <mi> c </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> u </mi>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mrow>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox[RowBox[List["j", "+", "2"]], TraditionalForm]], SubscriptBox["F", FormBox[RowBox[List["j", "+", "1"]], TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List["c", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", RowBox[List["2", " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[FractionBox[RowBox[List["c", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", RowBox[List["2", " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], HypergeometricPFQ], ",", TagBox["1", HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox[RowBox[List["c", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", RowBox[List["2", " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], "+", "1"]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[RowBox[List[FractionBox[RowBox[List["c", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", RowBox[List["2", " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], "+", "1"]], HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], HypergeometricPFQ]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], HypergeometricPFQ] </annotation>  </semantics>  </mrow>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mi> ⅇ </mi>  <mrow>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> π </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> + </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> u </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> n </mi>  </munderover>  <mrow>  <mfrac>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mi> j </mi>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mi> j </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> u </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> j </mi>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  <mtext>   </mtext>  </mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mi> j </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ! </mo>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mrow>  <mi> j </mi>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  </msub>  <msub>  <mi> F </mi>  <mrow>  <mi> j </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <mi> c </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> u </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mfrac>  <mrow>  <mi> c </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> u </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> , </mo>  <mn> 1 </mn>  </mrow>  <mo> ; </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <mi> c </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> u </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mrow>  <mfrac>  <mrow>  <mi> c </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> u </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mrow>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox[RowBox[List["j", "+", "2"]], TraditionalForm]], SubscriptBox["F", FormBox[RowBox[List["j", "+", "1"]], TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List["c", "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "k"]]]], ")"]]]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List["u", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], RowBox[List["2", " ", "c"]]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[FractionBox[RowBox[List["c", "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "k"]]]], ")"]]]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List["u", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], RowBox[List["2", " ", "c"]]], HypergeometricPFQ], ",", TagBox["1", HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox[RowBox[List["c", "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "k"]]]], ")"]]]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List["u", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], RowBox[List["2", " ", "c"]]], "+", "1"]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[RowBox[List[FractionBox[RowBox[List["c", "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "k"]]]], ")"]]]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List["u", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], RowBox[List["2", " ", "c"]]], "+", "1"]], HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], HypergeometricPFQ]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], HypergeometricPFQ] </annotation>  </semantics>  </mrow>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> u </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> m </mi>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  <mn> 2 </mn>  </mfrac>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> n </mi>  </munderover>  <mrow>  <mfrac>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mi> j </mi>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mi> j </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> + </mo>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> u </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> j </mi>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  <mtext>   </mtext>  </mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mi> j </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ! </mo>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mrow>  <mi> j </mi>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  </msub>  <msub>  <mi> F </mi>  <mrow>  <mi> j </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <mi> c </mi>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> u </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mfrac>  <mrow>  <mi> c </mi>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> u </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> , </mo>  <mn> 1 </mn>  </mrow>  <mo> ; </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <mi> c </mi>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> u </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mrow>  <mfrac>  <mrow>  <mi> c </mi>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> u </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mrow>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox[RowBox[List["j", "+", "2"]], TraditionalForm]], SubscriptBox["F", FormBox[RowBox[List["j", "+", "1"]], TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List["c", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "k"]]]], ")"]]]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List["u", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], RowBox[List["2", " ", "c"]]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[FractionBox[RowBox[List["c", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "k"]]]], ")"]]]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List["u", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], RowBox[List["2", " ", "c"]]], HypergeometricPFQ], ",", TagBox["1", HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox[RowBox[List["c", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "k"]]]], ")"]]]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List["u", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], RowBox[List["2", " ", "c"]]], "+", "1"]], HypergeometricPFQ], ",", TagBox["\[Ellipsis]", HypergeometricPFQ], ",", TagBox[RowBox[List[FractionBox[RowBox[List["c", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "k"]]]], ")"]]]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List["u", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], RowBox[List["2", " ", "c"]]], "+", "1"]], HypergeometricPFQ]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ], ";", TagBox[RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], HypergeometricPFQ]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], HypergeometricPFQ] </annotation>  </semantics>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mrow>  <mi> n </mi>  <mo> ∈ </mo>  <mi> ℕ </mi>  </mrow>  <mo> ∧ </mo>  <mrow>  <mi> m </mi>  <mo> ∈ </mo>  <msup>  <mi> ℕ </mi>  <mo> + </mo>  </msup>  </mrow>  <mo> ∧ </mo>  <mrow>  <mi> u </mi>  <mo> ∈ </mo>  <msup>  <mi> ℕ </mi>  <mo> + </mo>  </msup>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <eq />  <apply>  <int />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <ci> n </ci>  </apply>  <apply>  <power />  <apply>  <sin />  <apply>  <times />  <ci> a </ci>  <ci> z </ci>  </apply>  </apply>  <ci> m </ci>  </apply>  <apply>  <power />  <apply>  <sinh />  <apply>  <times />  <ci> b </ci>  <ci> z </ci>  </apply>  </apply>  <ci> u </ci>  </apply>  <apply>  <sech />  <apply>  <times />  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <imaginaryi />  <ci> u </ci>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> u </ci>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <ci> Binomial </ci>  <ci> m </ci>  <apply>  <times />  <ci> m </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Binomial </ci>  <ci> u </ci>  <apply>  <times />  <ci> u </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <factorial />  <ci> n </ci>  </apply>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <rem />  <ci> $CellContext`m </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <rem />  <ci> $CellContext`u </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> j </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <ci> n </ci>  </uplimit>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  <apply>  <power />  <ci> z </ci>  <apply>  <plus />  <ci> n </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> c </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <factorial />  <apply>  <plus />  <ci> n </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ci> HypergeometricPFQ </ci>  <list>  <cn type='rational'> 1 <sep /> 2 </cn>  <ci> … </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  <cn type='integer'> 1 </cn>  </list>  <list>  <cn type='rational'> 3 <sep /> 2 </cn>  <ci> … </ci>  <cn type='rational'> 3 <sep /> 2 </cn>  </list>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> u </ci>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <power />  <imaginaryi />  <apply>  <plus />  <ci> m </ci>  <ci> u </ci>  </apply>  </apply>  <apply>  <ci> Binomial </ci>  <ci> u </ci>  <apply>  <times />  <ci> u </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <rem />  <ci> $CellContext`u </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <factorial />  <ci> n </ci>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> k </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <apply>  <floor />  <apply>  <times />  <apply>  <plus />  <ci> m </ci>  <cn type='integer'> -1 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </uplimit>  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  <apply>  <ci> Binomial </ci>  <ci> m </ci>  <ci> k </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <times />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <imaginaryi />  </apply>  <ci> a </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  </apply>  </apply>  </apply>  <ci> z </ci>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> j </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <ci> n </ci>  </uplimit>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  <apply>  <power />  <ci> z </ci>  <apply>  <plus />  <ci> n </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <ci> a </ci>  <imaginaryi />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> m </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <factorial />  <apply>  <plus />  <ci> n </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ci> HypergeometricPFQ </ci>  <list>  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <imaginaryi />  <ci> a </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> m </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <ci> … </ci>  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <imaginaryi />  <ci> a </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> m </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </list>  <list>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <imaginaryi />  <ci> a </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> m </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <ci> … </ci>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <imaginaryi />  <ci> a </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> m </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </list>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <ci> m </ci>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <apply>  <times />  <imaginaryi />  <ci> a </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  </apply>  </apply>  </apply>  <ci> z </ci>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> j </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <ci> n </ci>  </uplimit>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  <apply>  <power />  <ci> z </ci>  <apply>  <plus />  <ci> n </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <ci> a </ci>  <imaginaryi />  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <factorial />  <apply>  <plus />  <ci> n </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ci> HypergeometricPFQ </ci>  <list>  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <imaginaryi />  <ci> a </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <ci> … </ci>  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <imaginaryi />  <ci> a </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </list>  <list>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <imaginaryi />  <ci> a </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <ci> … </ci>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <imaginaryi />  <ci> a </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </list>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> u </ci>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <ci> Binomial </ci>  <ci> m </ci>  <apply>  <times />  <ci> m </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <rem />  <ci> $CellContext`m </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <factorial />  <ci> n </ci>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> s </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <apply>  <floor />  <apply>  <times />  <apply>  <plus />  <ci> u </ci>  <cn type='integer'> -1 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </uplimit>  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <ci> s </ci>  </apply>  <apply>  <ci> Binomial </ci>  <ci> u </ci>  <ci> s </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <ci> u </ci>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> b </ci>  </apply>  <apply>  <plus />  <ci> u </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  <ci> z </ci>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> j </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <ci> n </ci>  </uplimit>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  <apply>  <power />  <ci> z </ci>  <apply>  <plus />  <ci> n </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> b </ci>  <apply>  <plus />  <ci> u </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <factorial />  <apply>  <plus />  <ci> n </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ci> HypergeometricPFQ </ci>  <list>  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> b </ci>  <apply>  <plus />  <ci> u </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <ci> … </ci>  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> b </ci>  <apply>  <plus />  <ci> u </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </list>  <list>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> b </ci>  <apply>  <plus />  <ci> u </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <ci> … </ci>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> b </ci>  <apply>  <plus />  <ci> u </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </list>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <times />  <apply>  <times />  <ci> b </ci>  <apply>  <plus />  <ci> u </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  <ci> z </ci>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> j </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <ci> n </ci>  </uplimit>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  <apply>  <power />  <ci> z </ci>  <apply>  <plus />  <ci> n </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <ci> b </ci>  <apply>  <plus />  <ci> u </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <factorial />  <apply>  <plus />  <ci> n </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ci> HypergeometricPFQ </ci>  <list>  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <ci> b </ci>  <apply>  <plus />  <ci> u </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <ci> … </ci>  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <ci> b </ci>  <apply>  <plus />  <ci> u </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </list>  <list>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <ci> b </ci>  <apply>  <plus />  <ci> u </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <ci> … </ci>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <ci> b </ci>  <apply>  <plus />  <ci> u </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </list>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> u </ci>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <factorial />  <ci> n </ci>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> k </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <apply>  <floor />  <apply>  <times />  <apply>  <plus />  <ci> m </ci>  <cn type='integer'> -1 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </uplimit>  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  <apply>  <ci> Binomial </ci>  <ci> m </ci>  <ci> k </ci>  </apply>  <apply>  <sum />  <bvar>  <ci> s </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <apply>  <floor />  <apply>  <times />  <apply>  <plus />  <ci> u </ci>  <cn type='integer'> -1 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </uplimit>  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <ci> s </ci>  </apply>  <apply>  <ci> Binomial </ci>  <ci> u </ci>  <ci> s </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <ci> u </ci>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <imaginaryi />  <ci> a </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> b </ci>  <apply>  <plus />  <ci> u </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <ci> z </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> m </ci>  <pi />  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> j </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <ci> n </ci>  </uplimit>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  <apply>  <power />  <ci> z </ci>  <apply>  <plus />  <ci> n </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <ci> a </ci>  <imaginaryi />  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> b </ci>  <apply>  <plus />  <ci> u </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <factorial />  <apply>  <plus />  <ci> n </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ci> HypergeometricPFQ </ci>  <list>  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <imaginaryi />  <ci> a </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <ci> b </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> u </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <ci> … </ci>  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <imaginaryi />  <ci> a </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <ci> b </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> u </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </list>  <list>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <imaginaryi />  <ci> a </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <ci> b </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> u </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <ci> … </ci>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <imaginaryi />  <ci> a </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <ci> b </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> u </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </list>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <ci> u </ci>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <plus />  <apply>  <times />  <imaginaryi />  <pi />  <ci> m </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <imaginaryi />  <ci> a </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> b </ci>  <apply>  <plus />  <ci> u </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> j </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <ci> n </ci>  </uplimit>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  <apply>  <power />  <ci> z </ci>  <apply>  <plus />  <ci> n </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> a </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> b </ci>  <apply>  <plus />  <ci> u </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <factorial />  <apply>  <plus />  <ci> n </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ci> HypergeometricPFQ </ci>  <list>  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> a </ci>  <ci> k </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> a </ci>  <ci> m </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> b </ci>  <ci> u </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <ci> … </ci>  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> a </ci>  <ci> k </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> a </ci>  <ci> m </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> b </ci>  <ci> u </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </list>  <list>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> a </ci>  <ci> k </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> a </ci>  <ci> m </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> b </ci>  <ci> u </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <ci> … </ci>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> a </ci>  <ci> k </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> a </ci>  <ci> m </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> b </ci>  <ci> u </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </list>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <plus />  <apply>  <times />  <imaginaryi />  <pi />  <ci> m </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <apply>  <plus />  <ci> u </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> a </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> j </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <ci> n </ci>  </uplimit>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  <apply>  <power />  <ci> z </ci>  <apply>  <plus />  <ci> n </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> a </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <ci> b </ci>  <apply>  <plus />  <ci> u </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <factorial />  <apply>  <plus />  <ci> n </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ci> HypergeometricPFQ </ci>  <list>  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> a </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <ci> b </ci>  <apply>  <plus />  <ci> u </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <ci> … </ci>  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> a </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <ci> b </ci>  <apply>  <plus />  <ci> u </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </list>  <list>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> a </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <ci> b </ci>  <apply>  <plus />  <ci> u </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <ci> … </ci>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> a </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <ci> b </ci>  <apply>  <plus />  <ci> u </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </list>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <ci> a </ci>  <imaginaryi />  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <ci> b </ci>  <apply>  <plus />  <ci> u </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <ci> z </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> m </ci>  <pi />  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> j </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <ci> n </ci>  </uplimit>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  <apply>  <power />  <ci> z </ci>  <apply>  <plus />  <ci> n </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <ci> a </ci>  <imaginaryi />  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <ci> b </ci>  <apply>  <plus />  <ci> u </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <factorial />  <apply>  <plus />  <ci> n </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> j </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ci> HypergeometricPFQ </ci>  <list>  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <imaginaryi />  <ci> a </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <ci> b </ci>  <apply>  <plus />  <ci> u </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <ci> … </ci>  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <imaginaryi />  <ci> a </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <ci> b </ci>  <apply>  <plus />  <ci> u </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </list>  <list>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <imaginaryi />  <ci> a </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <ci> b </ci>  <apply>  <plus />  <ci> u </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <ci> … </ci>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <imaginaryi />  <ci> a </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <ci> b </ci>  <apply>  <plus />  <ci> u </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </list>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <and />  <apply>  <in />  <ci> n </ci>  <ci> ℕ </ci>  </apply>  <apply>  <in />  <ci> m </ci>  <apply>  <ci> SuperPlus </ci>  <ci> ℕ </ci>  </apply>  </apply>  <apply>  <in />  <ci> u </ci>  <apply>  <ci> SuperPlus </ci>  <ci> ℕ </ci>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 
  |   
  |  
  |  
  |   
  |  |  
  |   
  |  
  |  
  |   
  | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["z_", "n_"], " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["a_", " ", "z_"]], "]"]], "m_"], " ", SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List["b_", " ", "z_"]], "]"]], "u_"], " ", RowBox[List["Sech", "[", RowBox[List["c_", " ", "z_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[SuperscriptBox["\[ImaginaryI]", "u"], " ", SuperscriptBox["2", RowBox[List["1", "-", "m", "-", "u"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["u", ",", FractionBox["u", "2"]]], "]"]], " ", RowBox[List["n", "!"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["u", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", SuperscriptBox["c", RowBox[List[RowBox[List["-", "1"]], "-", "j"]]]]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["Join", "[", RowBox[List[RowBox[List["Table", "[", RowBox[List[FractionBox["1", "2"], ",", RowBox[List["{", RowBox[List["K$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], ",", RowBox[List["{", "1", "}"]]]], "]"]], ",", RowBox[List["Join", "[", RowBox[List["Table", "[", RowBox[List[FractionBox["3", "2"], ",", RowBox[List["{", RowBox[List["K$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], "]"]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]]]]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List["1", "-", "m", "-", "u"]]], " ", SuperscriptBox["\[ImaginaryI]", RowBox[List["m", "+", "u"]]], " ", RowBox[List["Binomial", "[", RowBox[List["u", ",", FractionBox["u", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["u", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List["n", "!"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]], "+", "c"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]]]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["Join", "[", RowBox[List[RowBox[List["Table", "[", RowBox[List[FractionBox[RowBox[List["c", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]]]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["{", RowBox[List["K$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], ",", RowBox[List["{", "1", "}"]]]], "]"]], ",", RowBox[List["Join", "[", RowBox[List["Table", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List["c", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "m"]], ")"]]]]]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["{", RowBox[List["K$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], "]"]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]]]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "m"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "c"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]]]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["Join", "[", RowBox[List[RowBox[List["Table", "[", RowBox[List[FractionBox[RowBox[List["c", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]]]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["{", RowBox[List["K$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], ",", RowBox[List["{", "1", "}"]]]], "]"]], ",", RowBox[List["Join", "[", RowBox[List["Table", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List["c", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]]]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["{", RowBox[List["K$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], "]"]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]]]]]]]], ")"]]]]]]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List["1", "-", "m", "-", "u"]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List["n", "!"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "u"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "s"], " ", RowBox[List["Binomial", "[", RowBox[List["u", ",", "s"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "u"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "u"]], ")"]]]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "u"]], ")"]]]], "+", "c"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]]]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["Join", "[", RowBox[List[RowBox[List["Table", "[", RowBox[List[FractionBox[RowBox[List["c", "-", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "u"]], ")"]]]]]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["{", RowBox[List["K$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], ",", RowBox[List["{", "1", "}"]]]], "]"]], ",", RowBox[List["Join", "[", RowBox[List["Table", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List["c", "-", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "u"]], ")"]]]]]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["{", RowBox[List["K$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], "]"]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "u"]], ")"]]]], ")"]], " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "u"]], ")"]]]], "+", "c"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]]]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["Join", "[", RowBox[List[RowBox[List["Table", "[", RowBox[List[FractionBox[RowBox[List["c", "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "u"]], ")"]]]]]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["{", RowBox[List["K$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], ",", RowBox[List["{", "1", "}"]]]], "]"]], ",", RowBox[List["Join", "[", RowBox[List["Table", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List["c", "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "u"]], ")"]]]]]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["{", RowBox[List["K$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], "]"]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]]]]]]]], ")"]]]]]]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List["1", "-", "m", "-", "u"]]], " ", RowBox[List["n", "!"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "u"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "s"], " ", RowBox[List["Binomial", "[", RowBox[List["u", ",", "s"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "u"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", "m", " ", "\[Pi]"]], "2"], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "-", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "u"]], ")"]]]]]], ")"]], " ", "z"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "-", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "u"]], ")"]]]], "+", "c"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]]]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["Join", "[", RowBox[List[RowBox[List["Table", "[", RowBox[List[FractionBox[RowBox[List["c", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", RowBox[List["2", " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["{", RowBox[List["K$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], ",", RowBox[List["{", "1", "}"]]]], "]"]], ",", RowBox[List["Join", "[", RowBox[List["Table", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List["c", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", RowBox[List["2", " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "u"]]]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["{", RowBox[List["K$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], "]"]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]]]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "u"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", "\[ImaginaryI]", " ", "m", " ", "\[Pi]"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "-", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "u"]], ")"]]]]]], ")"]], " ", "z"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "-", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "u"]], ")"]]]], "+", "c"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]]]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["Join", "[", RowBox[List[RowBox[List["Table", "[", RowBox[List[FractionBox[RowBox[List["c", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "s"]], "-", "u"]], ")"]]]]]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["{", RowBox[List["K$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], ",", RowBox[List["{", "1", "}"]]]], "]"]], ",", RowBox[List["Join", "[", RowBox[List["Table", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List["c", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "s"]], "-", "u"]], ")"]]]]]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["{", RowBox[List["K$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], "]"]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", "m", " ", "\[Pi]"]], "2"], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "u"]], ")"]]]]]], ")"]], " ", "z"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "u"]], ")"]]]], "+", "c"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]]]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["Join", "[", RowBox[List[RowBox[List["Table", "[", RowBox[List[FractionBox[RowBox[List["c", "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "u"]], ")"]]]]]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["{", RowBox[List["K$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], ",", RowBox[List["{", "1", "}"]]]], "]"]], ",", RowBox[List["Join", "[", RowBox[List["Table", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List["c", "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "u"]], ")"]]]]]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["{", RowBox[List["K$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], "]"]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", "\[ImaginaryI]", " ", "m", " ", "\[Pi]"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "u"]], ")"]]]]]], ")"]], " ", "z"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "j"]], "+", "n"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "u"]], ")"]]]], "+", "c"]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "j"]]]]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["Join", "[", RowBox[List[RowBox[List["Table", "[", RowBox[List[FractionBox[RowBox[List["c", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "u"]], ")"]]]]]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["{", RowBox[List["K$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], ",", RowBox[List["{", "1", "}"]]]], "]"]], ",", RowBox[List["Join", "[", RowBox[List["Table", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List["c", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "u"]], ")"]]]]]], RowBox[List["2", " ", "c"]]]]], ",", RowBox[List["{", RowBox[List["K$1", ",", "1", ",", RowBox[List["1", "+", "j"]]]], "}"]]]], "]"]], "]"]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "+", "n"]], ")"]], "!"]]]]]]]]], ")"]]]]]]]]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]], "&&", RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", ">", "0"]], "&&", RowBox[List["u", "\[Element]", "Integers"]], "&&", RowBox[List["u", ">", "0"]]]]]]]]]]  |  
  |  
  |   
  |  
  |  
  | 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Date Added to functions.wolfram.com (modification date)
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 | 
  | 
  
  
  
 |  
 
 |