Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Sech






Mathematica Notation

Traditional Notation









Elementary Functions > Sech[z] > Integration > Indefinite integration > Involving functions of the direct function and hyperbolic functions > Involving algebraic functions of the direct function and hyperbolic functions > Involving algebraic functions of tanh





http://functions.wolfram.com/01.24.21.0473.01









  


  










Input Form





Integrate[(Csch[z]^2 (Sech[z]^2 - 3 Tanh[z] Sqrt[4 Sech[z]^2 + 5 Tanh[z]^2]))/ Sqrt[(4 Sech[z]^2 + 5 Tanh[z]^2)^3], z] == -(Csch[z] Sech[z]^2 Sqrt[(3 + 5 Cosh[2 z]) Sech[z]^2] (3 Cosh[z] Sqrt[(3 + 5 Cosh[2 z]) Sech[z]^2] + 5 Cosh[3 z] Sqrt[(3 + 5 Cosh[2 z]) Sech[z]^2] - 3 Sqrt[2] (Log[3 + 5 Cosh[2 z]] - 2 Log[Sinh[z]]) (Sinh[z] + 5 Sinh[3 z])))/(64 Sqrt[(4 Sech[z]^2 + 5 Tanh[z]^2)^3])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["Csch", "[", "z", "]"]], "2"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Sech", "[", "z", "]"]], "2"], "-", RowBox[List["3", " ", RowBox[List["Tanh", "[", "z", "]"]], " ", SqrtBox[RowBox[List[RowBox[List["4", " ", SuperscriptBox[RowBox[List["Sech", "[", "z", "]"]], "2"]]], "+", RowBox[List["5", " ", SuperscriptBox[RowBox[List["Tanh", "[", "z", "]"]], "2"]]]]]]]]]], ")"]]]], SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["4", " ", SuperscriptBox[RowBox[List["Sech", "[", "z", "]"]], "2"]]], "+", RowBox[List["5", " ", SuperscriptBox[RowBox[List["Tanh", "[", "z", "]"]], "2"]]]]], ")"]], "3"]]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List["Csch", "[", "z", "]"]], " ", SuperscriptBox[RowBox[List["Sech", "[", "z", "]"]], "2"], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["3", "+", RowBox[List["5", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "z"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Sech", "[", "z", "]"]], "2"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", RowBox[List["Cosh", "[", "z", "]"]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["3", "+", RowBox[List["5", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "z"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Sech", "[", "z", "]"]], "2"]]]]]], "+", RowBox[List["5", " ", RowBox[List["Cosh", "[", RowBox[List["3", " ", "z"]], "]"]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["3", "+", RowBox[List["5", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "z"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Sech", "[", "z", "]"]], "2"]]]]]], "-", RowBox[List["3", " ", SqrtBox["2"], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", RowBox[List["3", "+", RowBox[List["5", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "z"]], "]"]]]]]], "]"]], "-", RowBox[List["2", " ", RowBox[List["Log", "[", RowBox[List["Sinh", "[", "z", "]"]], "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Sinh", "[", "z", "]"]], "+", RowBox[List["5", " ", RowBox[List["Sinh", "[", RowBox[List["3", " ", "z"]], "]"]]]]]], ")"]]]]]], ")"]]]], ")"]]]], "/", RowBox[List["(", RowBox[List["64", " ", SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["4", " ", SuperscriptBox[RowBox[List["Sech", "[", "z", "]"]], "2"]]], "+", RowBox[List["5", " ", SuperscriptBox[RowBox[List["Tanh", "[", "z", "]"]], "2"]]]]], ")"]], "3"]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mfrac> <mrow> <mrow> <msup> <mi> csch </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> sech </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <mi> tanh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> sech </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 5 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> tanh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <msqrt> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> sech </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 5 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> tanh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </msqrt> </mfrac> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> csch </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> sech </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 5 </mn> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> sech </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 5 </mn> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> sech </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mn> 5 </mn> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mn> 5 </mn> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 5 </mn> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 5 </mn> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> sech </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mn> 64 </mn> <mo> &#8290; </mo> <msqrt> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> sech </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 5 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> tanh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <apply> <csch /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <power /> <apply> <sech /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <tanh /> <ci> z </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <sech /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <power /> <apply> <tanh /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <sech /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <power /> <apply> <tanh /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <csch /> <ci> z </ci> </apply> <apply> <power /> <apply> <sech /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <cosh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <apply> <sech /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <cosh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <apply> <sech /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <cosh /> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <ln /> <apply> <plus /> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <cosh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ln /> <apply> <sinh /> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <sinh /> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <sinh /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <cosh /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <cosh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <apply> <sech /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 64 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <sech /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <power /> <apply> <tanh /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["Csch", "[", "z_", "]"]], "2"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Sech", "[", "z_", "]"]], "2"], "-", RowBox[List["3", " ", RowBox[List["Tanh", "[", "z_", "]"]], " ", SqrtBox[RowBox[List[RowBox[List["4", " ", SuperscriptBox[RowBox[List["Sech", "[", "z_", "]"]], "2"]]], "+", RowBox[List["5", " ", SuperscriptBox[RowBox[List["Tanh", "[", "z_", "]"]], "2"]]]]]]]]]], ")"]]]], SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["4", " ", SuperscriptBox[RowBox[List["Sech", "[", "z_", "]"]], "2"]]], "+", RowBox[List["5", " ", SuperscriptBox[RowBox[List["Tanh", "[", "z_", "]"]], "2"]]]]], ")"]], "3"]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["Csch", "[", "z", "]"]], " ", SuperscriptBox[RowBox[List["Sech", "[", "z", "]"]], "2"], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["3", "+", RowBox[List["5", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "z"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Sech", "[", "z", "]"]], "2"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", RowBox[List["Cosh", "[", "z", "]"]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["3", "+", RowBox[List["5", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "z"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Sech", "[", "z", "]"]], "2"]]]]]], "+", RowBox[List["5", " ", RowBox[List["Cosh", "[", RowBox[List["3", " ", "z"]], "]"]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["3", "+", RowBox[List["5", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "z"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Sech", "[", "z", "]"]], "2"]]]]]], "-", RowBox[List["3", " ", SqrtBox["2"], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", RowBox[List["3", "+", RowBox[List["5", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "z"]], "]"]]]]]], "]"]], "-", RowBox[List["2", " ", RowBox[List["Log", "[", RowBox[List["Sinh", "[", "z", "]"]], "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Sinh", "[", "z", "]"]], "+", RowBox[List["5", " ", RowBox[List["Sinh", "[", RowBox[List["3", " ", "z"]], "]"]]]]]], ")"]]]]]], ")"]]]], RowBox[List["64", " ", SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["4", " ", SuperscriptBox[RowBox[List["Sech", "[", "z", "]"]], "2"]]], "+", RowBox[List["5", " ", SuperscriptBox[RowBox[List["Tanh", "[", "z", "]"]], "2"]]]]], ")"]], "3"]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18