|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.24.21.0477.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[((3 + Sinh[z]^2) Tanh[z]^3)/((-2 + Cosh[z]^2)
Sqrt[(5 - 4 Sech[z]^2)^3]), z] ==
(Sech[z]^2 (21 - 35 Cosh[2 z] + (1/(15 Sqrt[1 + Cosh[2 z]]))
((-3 + 5 Cosh[2 z])^(3/2) (36 Sqrt[5] ArcSinh[Sqrt[-3 + 5 Cosh[2 z]]/
(2 Sqrt[2])] Cosh[z] - 5 Sqrt[3]
(14 ArcTanh[(Sqrt[6] Cosh[z])/Sqrt[-3 + 5 Cosh[2 z]]]
Sqrt[Cosh[z]^2] + 3 Cosh[z]
(-Log[4 Sqrt[3] + 5 Sqrt[6] Sqrt[Cosh[z]^2] -
3 Sqrt[-3 + 5 Cosh[2 z]]] - Log[2 Sqrt[3] -
Sqrt[-3 + 5 Cosh[2 z]]] + Log[2 Sqrt[3] +
Sqrt[-3 + 5 Cosh[2 z]]] + Log[4 Sqrt[3] + 5 Sqrt[6]
Sqrt[Cosh[z]^2] + 3 Sqrt[-3 + 5 Cosh[2 z]]]))) Sech[z])))/
(120 Sqrt[(5 - 4 Sech[z]^2)^3])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["3", "+", SuperscriptBox[RowBox[List["Sinh", "[", "z", "]"]], "2"]]], ")"]], " ", SuperscriptBox[RowBox[List["Tanh", "[", "z", "]"]], "3"]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", SuperscriptBox[RowBox[List["Cosh", "[", "z", "]"]], "2"]]], ")"]], " ", SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List["5", "-", RowBox[List["4", " ", SuperscriptBox[RowBox[List["Sech", "[", "z", "]"]], "2"]]]]], ")"]], "3"]]]]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Sech", "[", "z", "]"]], "2"], " ", RowBox[List["(", RowBox[List["21", "-", RowBox[List["35", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "z"]], "]"]]]], "+", RowBox[List[FractionBox["1", RowBox[List["15", " ", SqrtBox[RowBox[List["1", "+", RowBox[List["Cosh", "[", RowBox[List["2", " ", "z"]], "]"]]]]]]]], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["5", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "z"]], "]"]]]]]], ")"]], RowBox[List["3", "/", "2"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["36", " ", SqrtBox["5"], " ", RowBox[List["ArcSinh", "[", FractionBox[SqrtBox[RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["5", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "z"]], "]"]]]]]]], RowBox[List["2", " ", SqrtBox["2"]]]], "]"]], " ", RowBox[List["Cosh", "[", "z", "]"]]]], "-", RowBox[List["5", " ", SqrtBox["3"], " ", RowBox[List["(", RowBox[List[RowBox[List["14", " ", RowBox[List["ArcTanh", "[", FractionBox[RowBox[List[SqrtBox["6"], " ", RowBox[List["Cosh", "[", "z", "]"]]]], SqrtBox[RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["5", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "z"]], "]"]]]]]]]], "]"]], " ", SqrtBox[SuperscriptBox[RowBox[List["Cosh", "[", "z", "]"]], "2"]]]], "+", RowBox[List["3", " ", RowBox[List["Cosh", "[", "z", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Log", "[", RowBox[List[RowBox[List["4", " ", SqrtBox["3"]]], "+", RowBox[List["5", " ", SqrtBox["6"], " ", SqrtBox[SuperscriptBox[RowBox[List["Cosh", "[", "z", "]"]], "2"]]]], "-", RowBox[List["3", " ", SqrtBox[RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["5", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "z"]], "]"]]]]]]]]]]], "]"]]]], "-", RowBox[List["Log", "[", RowBox[List[RowBox[List["2", " ", SqrtBox["3"]]], "-", SqrtBox[RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["5", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "z"]], "]"]]]]]]]]], "]"]], "+", RowBox[List["Log", "[", RowBox[List[RowBox[List["2", " ", SqrtBox["3"]]], "+", SqrtBox[RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["5", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "z"]], "]"]]]]]]]]], "]"]], "+", RowBox[List["Log", "[", RowBox[List[RowBox[List["4", " ", SqrtBox["3"]]], "+", RowBox[List["5", " ", SqrtBox["6"], " ", SqrtBox[SuperscriptBox[RowBox[List["Cosh", "[", "z", "]"]], "2"]]]], "+", RowBox[List["3", " ", SqrtBox[RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["5", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "z"]], "]"]]]]]]]]]]], "]"]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["Sech", "[", "z", "]"]]]], ")"]]]]]], ")"]]]], ")"]], "/", RowBox[List["(", RowBox[List["120", " ", SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List["5", "-", RowBox[List["4", " ", SuperscriptBox[RowBox[List["Sech", "[", "z", "]"]], "2"]]]]], ")"]], "3"]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> ∫ </mo> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> sinh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> tanh </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> cosh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 5 </mn> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <msup> <mi> sech </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </msqrt> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> sech </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 15 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 36 </mn> <mo> ⁢ </mo> <msqrt> <mn> 5 </mn> </msqrt> <mo> ⁢ </mo> <mrow> <msup> <mi> sinh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <msqrt> <mrow> <mrow> <mn> 5 </mn> <mo> ⁢ </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 3 </mn> </mrow> </msqrt> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mn> 2 </mn> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 5 </mn> <mo> ⁢ </mo> <msqrt> <mn> 3 </mn> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 14 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <msup> <mi> cosh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <msqrt> <mn> 6 </mn> </msqrt> <mo> ⁢ </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <msqrt> <mrow> <mrow> <mn> 5 </mn> <mo> ⁢ </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 3 </mn> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mn> 5 </mn> <mo> ⁢ </mo> <msqrt> <mn> 6 </mn> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <msup> <mi> cosh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </msqrt> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mn> 5 </mn> <mo> ⁢ </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 3 </mn> </mrow> </msqrt> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> <mo> - </mo> <msqrt> <mrow> <mrow> <mn> 5 </mn> <mo> ⁢ </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 3 </mn> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msqrt> <mrow> <mrow> <mn> 5 </mn> <mo> ⁢ </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 3 </mn> </mrow> </msqrt> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mn> 5 </mn> <mo> ⁢ </mo> <msqrt> <mn> 6 </mn> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <msup> <mi> cosh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </msqrt> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mn> 5 </mn> <mo> ⁢ </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 3 </mn> </mrow> </msqrt> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msqrt> <mn> 3 </mn> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> sech </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 5 </mn> <mo> ⁢ </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 35 </mn> <mo> ⁢ </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 21 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mn> 120 </mn> <mo> ⁢ </mo> <msqrt> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 5 </mn> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <msup> <mi> sech </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <plus /> <apply> <power /> <apply> <sinh /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <apply> <tanh /> <ci> z </ci> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <power /> <apply> <cosh /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 5 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <sech /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <sech /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 15 </cn> <apply> <power /> <apply> <plus /> <apply> <cosh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 36 </cn> <apply> <power /> <cn type='integer'> 5 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <arcsinh /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <cosh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> -3 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <cosh /> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 14 </cn> <apply> <power /> <apply> <power /> <apply> <cosh /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <arctanh /> <apply> <times /> <apply> <power /> <cn type='integer'> 6 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <cosh /> <ci> z </ci> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <cosh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> -3 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <cosh /> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <apply> <plus /> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <power /> <cn type='integer'> 6 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <cosh /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <cosh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> -3 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <cosh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> -3 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <ln /> <apply> <plus /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <cosh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> -3 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <ln /> <apply> <plus /> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <power /> <cn type='integer'> 6 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <cosh /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <cosh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> -3 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <sech /> <ci> z </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <cosh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> -3 </cn> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 35 </cn> <apply> <cosh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='integer'> 21 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 120 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 5 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <sech /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["3", "+", SuperscriptBox[RowBox[List["Sinh", "[", "z_", "]"]], "2"]]], ")"]], " ", SuperscriptBox[RowBox[List["Tanh", "[", "z_", "]"]], "3"]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", SuperscriptBox[RowBox[List["Cosh", "[", "z_", "]"]], "2"]]], ")"]], " ", SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List["5", "-", RowBox[List["4", " ", SuperscriptBox[RowBox[List["Sech", "[", "z_", "]"]], "2"]]]]], ")"]], "3"]]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["Sech", "[", "z", "]"]], "2"], " ", RowBox[List["(", RowBox[List["21", "-", RowBox[List["35", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "z"]], "]"]]]], "+", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["5", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "z"]], "]"]]]]]], ")"]], RowBox[List["3", "/", "2"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["36", " ", SqrtBox["5"], " ", RowBox[List["ArcSinh", "[", FractionBox[SqrtBox[RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["5", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "z"]], "]"]]]]]]], RowBox[List["2", " ", SqrtBox["2"]]]], "]"]], " ", RowBox[List["Cosh", "[", "z", "]"]]]], "-", RowBox[List["5", " ", SqrtBox["3"], " ", RowBox[List["(", RowBox[List[RowBox[List["14", " ", RowBox[List["ArcTanh", "[", FractionBox[RowBox[List[SqrtBox["6"], " ", RowBox[List["Cosh", "[", "z", "]"]]]], SqrtBox[RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["5", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "z"]], "]"]]]]]]]], "]"]], " ", SqrtBox[SuperscriptBox[RowBox[List["Cosh", "[", "z", "]"]], "2"]]]], "+", RowBox[List["3", " ", RowBox[List["Cosh", "[", "z", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Log", "[", RowBox[List[RowBox[List["4", " ", SqrtBox["3"]]], "+", RowBox[List["5", " ", SqrtBox["6"], " ", SqrtBox[SuperscriptBox[RowBox[List["Cosh", "[", "z", "]"]], "2"]]]], "-", RowBox[List["3", " ", SqrtBox[RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["5", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "z"]], "]"]]]]]]]]]]], "]"]]]], "-", RowBox[List["Log", "[", RowBox[List[RowBox[List["2", " ", SqrtBox["3"]]], "-", SqrtBox[RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["5", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "z"]], "]"]]]]]]]]], "]"]], "+", RowBox[List["Log", "[", RowBox[List[RowBox[List["2", " ", SqrtBox["3"]]], "+", SqrtBox[RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["5", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "z"]], "]"]]]]]]]]], "]"]], "+", RowBox[List["Log", "[", RowBox[List[RowBox[List["4", " ", SqrtBox["3"]]], "+", RowBox[List["5", " ", SqrtBox["6"], " ", SqrtBox[SuperscriptBox[RowBox[List["Cosh", "[", "z", "]"]], "2"]]]], "+", RowBox[List["3", " ", SqrtBox[RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["5", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "z"]], "]"]]]]]]]]]]], "]"]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["Sech", "[", "z", "]"]]]], RowBox[List["15", " ", SqrtBox[RowBox[List["1", "+", RowBox[List["Cosh", "[", RowBox[List["2", " ", "z"]], "]"]]]]]]]]]], ")"]]]], RowBox[List["120", " ", SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List["5", "-", RowBox[List["4", " ", SuperscriptBox[RowBox[List["Sech", "[", "z", "]"]], "2"]]]]], ")"]], "3"]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|