|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.06.06.0023.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Sin[z] \[Proportional] (-(I/2)) E^(I z) /; (z -> E^(I \[Phi]) Infinity) &&
-Pi < \[Phi] < 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["Sin", "[", "z", "]"]], "\[Proportional]", RowBox[List[RowBox[List["-", FractionBox["\[ImaginaryI]", "2"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "z"]]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List["z", "\[Rule]", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "\[Phi]"]]], " ", "\[Infinity]"]]]], ")"]], "\[And]", RowBox[List[RowBox[List["-", "\[Pi]"]], "<", "\[Phi]", "<", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ∝ </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mi> ⅈ </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <semantics> <mo> → </mo> <annotation encoding='Mathematica'> "\[Rule]" </annotation> </semantics> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> ϕ </mi> </mrow> </msup> <mo> ⁢ </mo> <mi> ∞ </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ∧ </mo> <mrow> <mrow> <mo> - </mo> <mi> π </mi> </mrow> <mo> < </mo> <mi> ϕ </mi> <mo> < </mo> <mn> 0 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <sin /> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <ci> Rule </ci> <ci> z </ci> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <ci> ϕ </ci> </apply> </apply> <infinity /> </apply> </apply> <apply> <lt /> <apply> <times /> <cn type='integer'> -1 </cn> <pi /> </apply> <ci> ϕ </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Sin", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["-", "\[ImaginaryI]"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "z"]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List["z", "\[Rule]", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "\[Phi]"]]], " ", "\[Infinity]"]]]], ")"]], "&&", RowBox[List[RowBox[List["-", "\[Pi]"]], "<", "\[Phi]", "<", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|