
|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
http://functions.wolfram.com/01.06.21.0094.01
|
|

|

|

|

|
|
|
|

|

|

|

|
|

|

|

|

|

|
Integrate[z^4 Sin[a z^2], z] ==
(1/8) (-((3 Sqrt[2 Pi] FresnelS[Sqrt[a] Sqrt[2/Pi] z])/a^(5/2)) +
(-4 a z^3 Cos[a z^2] + 6 z Sin[a z^2])/a^2)
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["z", "4"], " ", RowBox[List["Sin", "[", RowBox[List["a", " ", SuperscriptBox["z", "2"]]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["3", " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", RowBox[List["FresnelS", "[", RowBox[List[SqrtBox["a"], " ", SqrtBox[FractionBox["2", "\[Pi]"]], " ", "z"]], "]"]]]], SuperscriptBox["a", RowBox[List["5", "/", "2"]]]]]], "+", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", "a", " ", SuperscriptBox["z", "3"], " ", RowBox[List["Cos", "[", RowBox[List["a", " ", SuperscriptBox["z", "2"]]], "]"]]]], "+", RowBox[List["6", " ", "z", " ", RowBox[List["Sin", "[", RowBox[List["a", " ", SuperscriptBox["z", "2"]]], "]"]]]]]], SuperscriptBox["a", "2"]]]], ")"]]]]]]]]
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
|

|

|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> ∫ </mo> <mrow> <mrow> <msup> <mi> z </mi> <mn> 4 </mn> </msup> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mrow> <mn> 6 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mfrac> <mo> - </mo> <mrow> <mfrac> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </msqrt> </mrow> <msup> <mi> a </mi> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> <mo> ⁢ </mo> <mrow> <semantics> <mi> S </mi> <annotation encoding='Mathematica'> TagBox["S", FresnelS] </annotation> </semantics> <mo> ( </mo> <mrow> <msqrt> <mi> a </mi> </msqrt> <mo> ⁢ </mo> <msqrt> <mfrac> <mn> 2 </mn> <mi> π </mi> </mfrac> </msqrt> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> <apply> <sin /> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 6 </cn> <ci> z </ci> <apply> <sin /> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> <apply> <cos /> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> a </ci> <cn type='rational'> 5 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> FresnelS </ci> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <pi /> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|

|

|

|

|

| 
| 
| 
| 
| | 
| 
| 
| 
| 
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["z_", "4"], " ", RowBox[List["Sin", "[", RowBox[List["a_", " ", SuperscriptBox["z_", "2"]]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox["1", "8"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["3", " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", RowBox[List["FresnelS", "[", RowBox[List[SqrtBox["a"], " ", SqrtBox[FractionBox["2", "\[Pi]"]], " ", "z"]], "]"]]]], SuperscriptBox["a", RowBox[List["5", "/", "2"]]]]]], "+", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", "a", " ", SuperscriptBox["z", "3"], " ", RowBox[List["Cos", "[", RowBox[List["a", " ", SuperscriptBox["z", "2"]]], "]"]]]], "+", RowBox[List["6", " ", "z", " ", RowBox[List["Sin", "[", RowBox[List["a", " ", SuperscriptBox["z", "2"]]], "]"]]]]]], SuperscriptBox["a", "2"]]]], ")"]]]]]]]] |
| 
| 
| 
| 
|
|

|

|

|

|
Date Added to functions.wolfram.com (modification date)
|
|

|

|

|

|

|
|

|

|

|

|
|
 |
|
|