
|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
http://functions.wolfram.com/01.06.21.0146.01
|
|

|

|

|

|
|
|
|

|

|

|

|
|

|

|

|

|

|
Integrate[(z Sin[c z])/(a z + b), z] ==
(-(1/(a^2 c))) (a Cos[c z] - b c CosIntegral[c (b/a + z)] Sin[(b c)/a] +
b c Cos[(b c)/a] SinIntegral[c (b/a + z)])
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List["z", " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]], RowBox[List[RowBox[List["a", " ", "z"]], "+", "b"]]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox["1", RowBox[List[SuperscriptBox["a", "2"], " ", "c"]]]]], RowBox[List["(", RowBox[List[RowBox[List["a", " ", RowBox[List["Cos", "[", RowBox[List["c", " ", "z"]], "]"]]]], "-", RowBox[List["b", " ", "c", " ", RowBox[List["CosIntegral", "[", RowBox[List["c", " ", RowBox[List["(", RowBox[List[FractionBox["b", "a"], "+", "z"]], ")"]]]], "]"]], " ", RowBox[List["Sin", "[", FractionBox[RowBox[List["b", " ", "c"]], "a"], "]"]]]], "+", RowBox[List["b", " ", "c", " ", RowBox[List["Cos", "[", FractionBox[RowBox[List["b", " ", "c"]], "a"], "]"]], " ", RowBox[List["SinIntegral", "[", RowBox[List["c", " ", RowBox[List["(", RowBox[List[FractionBox["b", "a"], "+", "z"]], ")"]]]], "]"]]]]]], ")"]]]]]]]]
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
|

|

|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> ∫ </mo> <mrow> <mfrac> <mrow> <mi> z </mi> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mi> Ci </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mi> b </mi> <mi> a </mi> </mfrac> <mo> + </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mi> a </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mi> a </mi> </mfrac> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Si </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mi> b </mi> <mi> a </mi> </mfrac> <mo> + </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mfrac> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <ci> z </ci> <apply> <sin /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <cos /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <ci> c </ci> <apply> <ci> CosIntegral </ci> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <sin /> <apply> <times /> <ci> b </ci> <ci> c </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <ci> b </ci> <ci> c </ci> <apply> <cos /> <apply> <times /> <ci> b </ci> <ci> c </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> SinIntegral </ci> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|

|

|

|

|

| 
| 
| 
| 
| | 
| 
| 
| 
| 
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List["z_", " ", RowBox[List["Sin", "[", RowBox[List["c_", " ", "z_"]], "]"]]]], RowBox[List[RowBox[List["a_", " ", "z_"]], "+", "b_"]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["a", " ", RowBox[List["Cos", "[", RowBox[List["c", " ", "z"]], "]"]]]], "-", RowBox[List["b", " ", "c", " ", RowBox[List["CosIntegral", "[", RowBox[List["c", " ", RowBox[List["(", RowBox[List[FractionBox["b", "a"], "+", "z"]], ")"]]]], "]"]], " ", RowBox[List["Sin", "[", FractionBox[RowBox[List["b", " ", "c"]], "a"], "]"]]]], "+", RowBox[List["b", " ", "c", " ", RowBox[List["Cos", "[", FractionBox[RowBox[List["b", " ", "c"]], "a"], "]"]], " ", RowBox[List["SinIntegral", "[", RowBox[List["c", " ", RowBox[List["(", RowBox[List[FractionBox["b", "a"], "+", "z"]], ")"]]]], "]"]]]]]], RowBox[List[SuperscriptBox["a", "2"], " ", "c"]]]]]]]]] |
| 
| 
| 
| 
|
|

|

|

|

|
Date Added to functions.wolfram.com (modification date)
|
|

|

|

|

|

|
|

|

|

|

|
|
 |
|
|