|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.06.21.0453.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[z^2 E^(b Sqrt[z]) Sin[c Sqrt[z] + g], z] ==
(1/(b^2 + c^2)^6) 2 E^(b Sqrt[z])
((-c) (-240 b (3 b^4 - 10 b^2 c^2 + 3 c^4) + 120 (b^2 + c^2)
(5 b^4 - 10 b^2 c^2 + c^4) Sqrt[z] - 240 b (b - c) (b + c)
(b^2 + c^2)^2 z + 20 (3 b^2 - c^2) (b^2 + c^2)^3 z^(3/2) -
10 b (b^2 + c^2)^4 z^2 + (b^2 + c^2)^5 z^(5/2)) Cos[g + c Sqrt[z]] +
(-120 (b^6 - 15 b^4 c^2 + 15 b^2 c^4 - c^6) + 120 b (b^2 + c^2)
(b^4 - 10 b^2 c^2 + 5 c^4) Sqrt[z] - 60 (b^2 + c^2)^2
(b^4 - 6 b^2 c^2 + c^4) z + 20 b (b^2 - 3 c^2) (b^2 + c^2)^3 z^(3/2) -
5 (b - c) (b + c) (b^2 + c^2)^4 z^2 + b (b^2 + c^2)^5 z^(5/2))
Sin[g + c Sqrt[z]])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["z", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["b", " ", SqrtBox["z"]]]], RowBox[List["Sin", "[", RowBox[List[RowBox[List["c", " ", SqrtBox["z"]]], "+", "g"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["b", "2"], "+", SuperscriptBox["c", "2"]]], ")"]], "6"]], "2", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["b", " ", SqrtBox["z"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "c"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "240"]], " ", "b", " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", SuperscriptBox["b", "4"]]], "-", RowBox[List["10", " ", SuperscriptBox["b", "2"], " ", SuperscriptBox["c", "2"]]], "+", RowBox[List["3", " ", SuperscriptBox["c", "4"]]]]], ")"]]]], "+", RowBox[List["120", " ", RowBox[List["(", RowBox[List[SuperscriptBox["b", "2"], "+", SuperscriptBox["c", "2"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["5", " ", SuperscriptBox["b", "4"]]], "-", RowBox[List["10", " ", SuperscriptBox["b", "2"], " ", SuperscriptBox["c", "2"]]], "+", SuperscriptBox["c", "4"]]], ")"]], " ", SqrtBox["z"]]], "-", RowBox[List["240", " ", "b", " ", RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]], " ", RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["b", "2"], "+", SuperscriptBox["c", "2"]]], ")"]], "2"], " ", "z"]], "+", RowBox[List["20", " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", SuperscriptBox["b", "2"]]], "-", SuperscriptBox["c", "2"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["b", "2"], "+", SuperscriptBox["c", "2"]]], ")"]], "3"], " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "-", RowBox[List["10", " ", "b", " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["b", "2"], "+", SuperscriptBox["c", "2"]]], ")"]], "4"], " ", SuperscriptBox["z", "2"]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["b", "2"], "+", SuperscriptBox["c", "2"]]], ")"]], "5"], " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["g", "+", RowBox[List["c", " ", SqrtBox["z"]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "120"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["b", "6"], "-", RowBox[List["15", " ", SuperscriptBox["b", "4"], " ", SuperscriptBox["c", "2"]]], "+", RowBox[List["15", " ", SuperscriptBox["b", "2"], " ", SuperscriptBox["c", "4"]]], "-", SuperscriptBox["c", "6"]]], ")"]]]], "+", RowBox[List["120", " ", "b", " ", RowBox[List["(", RowBox[List[SuperscriptBox["b", "2"], "+", SuperscriptBox["c", "2"]]], ")"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["b", "4"], "-", RowBox[List["10", " ", SuperscriptBox["b", "2"], " ", SuperscriptBox["c", "2"]]], "+", RowBox[List["5", " ", SuperscriptBox["c", "4"]]]]], ")"]], " ", SqrtBox["z"]]], "-", RowBox[List["60", " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["b", "2"], "+", SuperscriptBox["c", "2"]]], ")"]], "2"], " ", RowBox[List["(", RowBox[List[SuperscriptBox["b", "4"], "-", RowBox[List["6", " ", SuperscriptBox["b", "2"], " ", SuperscriptBox["c", "2"]]], "+", SuperscriptBox["c", "4"]]], ")"]], " ", "z"]], "+", RowBox[List["20", " ", "b", " ", RowBox[List["(", RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["3", " ", SuperscriptBox["c", "2"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["b", "2"], "+", SuperscriptBox["c", "2"]]], ")"]], "3"], " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "-", RowBox[List["5", " ", RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]], " ", RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["b", "2"], "+", SuperscriptBox["c", "2"]]], ")"]], "4"], " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["b", "2"], "+", SuperscriptBox["c", "2"]]], ")"]], "5"], " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List["g", "+", RowBox[List["c", " ", SqrtBox["z"]]]]], "]"]]]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> ∫ </mo> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> + </mo> <mi> g </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mn> 1 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mn> 6 </mn> </msup> </mfrac> <mo> ⁢ </mo> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 20 </mn> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mn> 5 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 5 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mn> 4 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 60 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> b </mi> <mn> 4 </mn> </msup> <mo> - </mo> <mrow> <mn> 6 </mn> <mo> ⁢ </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <msup> <mi> c </mi> <mn> 4 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mn> 120 </mn> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> b </mi> <mn> 4 </mn> </msup> <mo> - </mo> <mrow> <mn> 10 </mn> <mo> ⁢ </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 5 </mn> <mo> ⁢ </mo> <msup> <mi> c </mi> <mn> 4 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> - </mo> <mrow> <mn> 120 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> b </mi> <mn> 6 </mn> </msup> <mo> - </mo> <mrow> <mn> 15 </mn> <mo> ⁢ </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> b </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 15 </mn> <mo> ⁢ </mo> <msup> <mi> c </mi> <mn> 4 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <msup> <mi> c </mi> <mn> 6 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> + </mo> <mi> g </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 20 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mn> 5 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 10 </mn> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mn> 4 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 240 </mn> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mn> 120 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 5 </mn> <mo> ⁢ </mo> <msup> <mi> b </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 10 </mn> <mo> ⁢ </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <msup> <mi> c </mi> <mn> 4 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> - </mo> <mrow> <mn> 240 </mn> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <msup> <mi> b </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 10 </mn> <mo> ⁢ </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <msup> <mi> c </mi> <mn> 4 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> + </mo> <mi> g </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <sin /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> c </ci> </apply> <ci> g </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 6 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 20 </cn> <ci> b </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 5 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <apply> <plus /> <ci> b </ci> <ci> c </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 60 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> 4 </cn> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 120 </cn> <ci> b </ci> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 10 </cn> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <power /> <ci> c </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 120 </cn> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 6 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 15 </cn> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 15 </cn> <apply> <power /> <ci> c </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> c </ci> <cn type='integer'> 6 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <sin /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> c </ci> </apply> <ci> g </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 20 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 5 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 10 </cn> <ci> b </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 240 </cn> <ci> b </ci> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <apply> <plus /> <ci> b </ci> <ci> c </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 120 </cn> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 10 </cn> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 240 </cn> <ci> b </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 10 </cn> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <ci> c </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <cos /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> c </ci> </apply> <ci> g </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["z_", "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["b_", " ", SqrtBox["z_"]]]], " ", RowBox[List["Sin", "[", RowBox[List[RowBox[List["c_", " ", SqrtBox["z_"]]], "+", "g_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["2", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["b", " ", SqrtBox["z"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "c"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "240"]], " ", "b", " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", SuperscriptBox["b", "4"]]], "-", RowBox[List["10", " ", SuperscriptBox["b", "2"], " ", SuperscriptBox["c", "2"]]], "+", RowBox[List["3", " ", SuperscriptBox["c", "4"]]]]], ")"]]]], "+", RowBox[List["120", " ", RowBox[List["(", RowBox[List[SuperscriptBox["b", "2"], "+", SuperscriptBox["c", "2"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["5", " ", SuperscriptBox["b", "4"]]], "-", RowBox[List["10", " ", SuperscriptBox["b", "2"], " ", SuperscriptBox["c", "2"]]], "+", SuperscriptBox["c", "4"]]], ")"]], " ", SqrtBox["z"]]], "-", RowBox[List["240", " ", "b", " ", RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]], " ", RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["b", "2"], "+", SuperscriptBox["c", "2"]]], ")"]], "2"], " ", "z"]], "+", RowBox[List["20", " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", SuperscriptBox["b", "2"]]], "-", SuperscriptBox["c", "2"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["b", "2"], "+", SuperscriptBox["c", "2"]]], ")"]], "3"], " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "-", RowBox[List["10", " ", "b", " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["b", "2"], "+", SuperscriptBox["c", "2"]]], ")"]], "4"], " ", SuperscriptBox["z", "2"]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["b", "2"], "+", SuperscriptBox["c", "2"]]], ")"]], "5"], " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["g", "+", RowBox[List["c", " ", SqrtBox["z"]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "120"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["b", "6"], "-", RowBox[List["15", " ", SuperscriptBox["b", "4"], " ", SuperscriptBox["c", "2"]]], "+", RowBox[List["15", " ", SuperscriptBox["b", "2"], " ", SuperscriptBox["c", "4"]]], "-", SuperscriptBox["c", "6"]]], ")"]]]], "+", RowBox[List["120", " ", "b", " ", RowBox[List["(", RowBox[List[SuperscriptBox["b", "2"], "+", SuperscriptBox["c", "2"]]], ")"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["b", "4"], "-", RowBox[List["10", " ", SuperscriptBox["b", "2"], " ", SuperscriptBox["c", "2"]]], "+", RowBox[List["5", " ", SuperscriptBox["c", "4"]]]]], ")"]], " ", SqrtBox["z"]]], "-", RowBox[List["60", " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["b", "2"], "+", SuperscriptBox["c", "2"]]], ")"]], "2"], " ", RowBox[List["(", RowBox[List[SuperscriptBox["b", "4"], "-", RowBox[List["6", " ", SuperscriptBox["b", "2"], " ", SuperscriptBox["c", "2"]]], "+", SuperscriptBox["c", "4"]]], ")"]], " ", "z"]], "+", RowBox[List["20", " ", "b", " ", RowBox[List["(", RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["3", " ", SuperscriptBox["c", "2"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["b", "2"], "+", SuperscriptBox["c", "2"]]], ")"]], "3"], " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "-", RowBox[List["5", " ", RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]], " ", RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["b", "2"], "+", SuperscriptBox["c", "2"]]], ")"]], "4"], " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["b", "2"], "+", SuperscriptBox["c", "2"]]], ")"]], "5"], " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List["g", "+", RowBox[List["c", " ", SqrtBox["z"]]]]], "]"]]]]]], ")"]]]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["b", "2"], "+", SuperscriptBox["c", "2"]]], ")"]], "6"]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|