Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Sin






Mathematica Notation

Traditional Notation









Elementary Functions > Sin[z] > Integration > Indefinite integration > Involving functions of the direct function > Involving rational functions of the direct function > Involving sinm(c z)/a+b sinn(c z)





http://functions.wolfram.com/01.06.21.0865.01









  


  










Input Form





Integrate[Sin[c z]^2/(a + b Sin[c z]^4), z] == (-(I/(2 Sqrt[b] c))) (ArcTan[((Sqrt[a] - I Sqrt[b]) Tan[c z])/Sqrt[a - I Sqrt[a] Sqrt[b]]]/ Sqrt[a - I Sqrt[a] Sqrt[b]] - ArcTan[((Sqrt[a] + I Sqrt[b]) Tan[c z])/Sqrt[a + I Sqrt[a] Sqrt[b]]]/ Sqrt[a + I Sqrt[a] Sqrt[b]])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox[SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]], "2"], RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]], "4"]]]]]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox["\[ImaginaryI]", RowBox[List["2", " ", SqrtBox["b"], " ", "c"]]]]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List["ArcTan", "[", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SqrtBox["a"], "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox["b"]]]]], ")"]], " ", RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]]]], SqrtBox[RowBox[List["a", "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox["a"], " ", SqrtBox["b"]]]]]]], "]"]], SqrtBox[RowBox[List["a", "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox["a"], " ", SqrtBox["b"]]]]]]], "-", FractionBox[RowBox[List["ArcTan", "[", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SqrtBox["a"], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox["b"]]]]], ")"]], " ", RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]]]], SqrtBox[RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox["a"], " ", SqrtBox["b"]]]]]]], "]"]], SqrtBox[RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox["a"], " ", SqrtBox["b"]]]]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mfrac> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mn> 4 </mn> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mi> &#8520; </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> b </mi> </msqrt> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mfrac> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <msqrt> <mi> a </mi> </msqrt> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mi> b </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> tan </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <msqrt> <mrow> <mi> a </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mi> a </mi> </msqrt> <mo> &#8290; </mo> <msqrt> <mi> b </mi> </msqrt> </mrow> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> <msqrt> <mrow> <mi> a </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mi> a </mi> </msqrt> <mo> &#8290; </mo> <msqrt> <mi> b </mi> </msqrt> </mrow> </mrow> </msqrt> </mfrac> <mo> - </mo> <mfrac> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <msqrt> <mi> a </mi> </msqrt> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mi> b </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> tan </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mi> b </mi> </msqrt> <mo> &#8290; </mo> <msqrt> <mi> a </mi> </msqrt> </mrow> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mi> b </mi> </msqrt> <mo> &#8290; </mo> <msqrt> <mi> a </mi> </msqrt> </mrow> </mrow> </msqrt> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <apply> <sin /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <sin /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> b </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <arctan /> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <ci> b </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <tan /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <arctan /> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <imaginaryi /> <apply> <power /> <ci> b </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <tan /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <imaginaryi /> <apply> <power /> <ci> b </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <imaginaryi /> <apply> <power /> <ci> b </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox[SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["c_", " ", "z_"]], "]"]], "2"], RowBox[List["a_", "+", RowBox[List["b_", " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["c_", " ", "z_"]], "]"]], "4"]]]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List["ArcTan", "[", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SqrtBox["a"], "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox["b"]]]]], ")"]], " ", RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]]]], SqrtBox[RowBox[List["a", "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox["a"], " ", SqrtBox["b"]]]]]]], "]"]], SqrtBox[RowBox[List["a", "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox["a"], " ", SqrtBox["b"]]]]]]], "-", FractionBox[RowBox[List["ArcTan", "[", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SqrtBox["a"], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox["b"]]]]], ")"]], " ", RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]]]], SqrtBox[RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox["a"], " ", SqrtBox["b"]]]]]]], "]"]], SqrtBox[RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox["a"], " ", SqrtBox["b"]]]]]]]]], ")"]]]], RowBox[List["2", " ", SqrtBox["b"], " ", "c"]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18