|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.06.21.0896.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[((a + b Sin[c z])^\[Nu])^\[Beta] Sin[d z], z] ==
-(((a - ((1/2) I b (-1 + E^(2 I c z)))/E^(I c z))^(\[Beta] \[Nu])
(E^(2 I d z) (d + c \[Beta] \[Nu]) AppellF1[d/c - \[Beta] \[Nu],
(-\[Beta]) \[Nu], (-\[Beta]) \[Nu], 1 + d/c - \[Beta] \[Nu],
(I b E^(I c z))/(a + Sqrt[a^2 - b^2]), (I b E^(I c z))/
(a - Sqrt[a^2 - b^2])] + (d - c \[Beta] \[Nu])
AppellF1[-((d + c \[Beta] \[Nu])/c), (-\[Beta]) \[Nu],
(-\[Beta]) \[Nu], 1 - d/c - \[Beta] \[Nu], (I b E^(I c z))/
(a + Sqrt[a^2 - b^2]), (I b E^(I c z))/(a - Sqrt[a^2 - b^2])])
((a + b Sin[c z])^\[Nu])^\[Beta])/
(E^(I d z) (1 + (I b E^(I c z))/(-a + Sqrt[a^2 - b^2]))^(\[Beta] \[Nu])
(1 - (I b E^(I c z))/(a + Sqrt[a^2 - b^2]))^(\[Beta] \[Nu])
(a + b Sin[c z])^(\[Beta] \[Nu])))/(2 (d - c \[Beta] \[Nu])
(d + c \[Beta] \[Nu]))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox[RowBox[List["(", SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]], "\[Nu]"], ")"]], "\[Beta]"], " ", RowBox[List["Sin", "[", RowBox[List["d", " ", "z"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "d", " ", "z"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "c", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]], ")"]], RowBox[List[RowBox[List["-", "\[Beta]"]], " ", "\[Nu]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "c", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]], ")"]], RowBox[List[RowBox[List["-", "\[Beta]"]], " ", "\[Nu]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", "-", RowBox[List[FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "c", " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]]], ")"]]]]]], ")"]], RowBox[List["\[Beta]", " ", "\[Nu]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "d", " ", "z"]]], " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["c", " ", "\[Beta]", " ", "\[Nu]"]]]], ")"]], " ", RowBox[List["AppellF1", "[", RowBox[List[RowBox[List[FractionBox["d", "c"], "-", RowBox[List["\[Beta]", " ", "\[Nu]"]]]], ",", RowBox[List[RowBox[List["-", "\[Beta]"]], " ", "\[Nu]"]], ",", RowBox[List[RowBox[List["-", "\[Beta]"]], " ", "\[Nu]"]], ",", RowBox[List["1", "+", FractionBox["d", "c"], "-", RowBox[List["\[Beta]", " ", "\[Nu]"]]]], ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "c", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]], ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "c", " ", "z"]]]]], RowBox[List["a", "-", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["d", "-", RowBox[List["c", " ", "\[Beta]", " ", "\[Nu]"]]]], ")"]], " ", RowBox[List["AppellF1", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["d", "+", RowBox[List["c", " ", "\[Beta]", " ", "\[Nu]"]]]], "c"]]], ",", RowBox[List[RowBox[List["-", "\[Beta]"]], " ", "\[Nu]"]], ",", RowBox[List[RowBox[List["-", "\[Beta]"]], " ", "\[Nu]"]], ",", RowBox[List["1", "-", FractionBox["d", "c"], "-", RowBox[List["\[Beta]", " ", "\[Nu]"]]]], ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "c", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]], ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "c", " ", "z"]]]]], RowBox[List["a", "-", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]], RowBox[List[RowBox[List["-", "\[Beta]"]], " ", "\[Nu]"]]], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]], "\[Nu]"], ")"]], "\[Beta]"]]], ")"]]]], "/", RowBox[List["(", RowBox[List["2", " ", RowBox[List["(", RowBox[List["d", "-", RowBox[List["c", " ", "\[Beta]", " ", "\[Nu]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["c", " ", "\[Beta]", " ", "\[Nu]"]]]], ")"]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> ∫ </mo> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mi> ν </mi> </msup> <mo> ) </mo> </mrow> <mi> β </mi> </msup> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> - </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> β </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> β </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> d </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> - </mo> <mi> a </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> β </mi> </mrow> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> β </mi> </mrow> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> + </mo> <msup> <mi> ⅇ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> β </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> - </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> β </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <semantics> <msub> <mi> F </mi> <mn> 1 </mn> </msub> <annotation-xml encoding='MathML-Content'> <ci> AppellF1 </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> β </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </mrow> <mi> c </mi> </mfrac> </mrow> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <mi> β </mi> </mrow> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> β </mi> </mrow> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mi> d </mi> <mi> c </mi> </mfrac> </mrow> <mo> - </mo> <mrow> <mi> β </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mfrac> </mrow> <mo> , </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <mi> a </mi> <mo> - </mo> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> d </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> β </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <semantics> <msub> <mi> F </mi> <mn> 1 </mn> </msub> <annotation-xml encoding='MathML-Content'> <ci> AppellF1 </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mrow> <mrow> <mfrac> <mi> d </mi> <mi> c </mi> </mfrac> <mo> - </mo> <mrow> <mi> β </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <mi> β </mi> </mrow> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> β </mi> </mrow> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> ; </mo> <mrow> <mfrac> <mi> d </mi> <mi> c </mi> </mfrac> <mo> - </mo> <mrow> <mi> β </mi> <mo> ⁢ </mo> <mi> ν </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mfrac> </mrow> <mo> , </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <mi> a </mi> <mo> - </mo> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> β </mi> </mrow> <mo> ⁢ </mo> <mi> ν </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mi> ν </mi> </msup> <mo> ) </mo> </mrow> <mi> β </mi> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <sin /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <ci> ν </ci> </apply> <ci> β </ci> </apply> <apply> <sin /> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> β </ci> <ci> ν </ci> </apply> </apply> </apply> <apply> <plus /> <ci> d </ci> <apply> <times /> <ci> c </ci> <ci> β </ci> <ci> ν </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> d </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <imaginaryi /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> β </ci> </apply> <ci> ν </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> β </ci> </apply> <ci> ν </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <imaginaryi /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <ci> β </ci> <ci> ν </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> β </ci> <ci> ν </ci> </apply> </apply> </apply> <apply> <ci> AppellF1 </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> d </ci> <apply> <times /> <ci> c </ci> <ci> β </ci> <ci> ν </ci> </apply> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> β </ci> </apply> <ci> ν </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> β </ci> </apply> <ci> ν </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> d </ci> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> β </ci> <ci> ν </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <imaginaryi /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> d </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <ci> d </ci> <apply> <times /> <ci> c </ci> <ci> β </ci> <ci> ν </ci> </apply> </apply> <apply> <ci> AppellF1 </ci> <apply> <plus /> <apply> <times /> <ci> d </ci> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> β </ci> <ci> ν </ci> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> β </ci> </apply> <ci> ν </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> β </ci> </apply> <ci> ν </ci> </apply> <apply> <plus /> <apply> <times /> <ci> d </ci> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> β </ci> <ci> ν </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <imaginaryi /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <sin /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> β </ci> </apply> <ci> ν </ci> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <sin /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <ci> ν </ci> </apply> <ci> β </ci> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", SuperscriptBox[RowBox[List["(", RowBox[List["a_", "+", RowBox[List["b_", " ", RowBox[List["Sin", "[", RowBox[List["c_", " ", "z_"]], "]"]]]]]], ")"]], "\[Nu]_"], ")"]], "\[Beta]_"], " ", RowBox[List["Sin", "[", RowBox[List["d_", " ", "z_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "d", " ", "z"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "c", " ", "z"]]]]], RowBox[List[RowBox[List["-", "a"]], "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]], ")"]], RowBox[List[RowBox[List["-", "\[Beta]"]], " ", "\[Nu]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "c", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]], ")"]], RowBox[List[RowBox[List["-", "\[Beta]"]], " ", "\[Nu]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", "-", RowBox[List[FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "c", " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]]], ")"]]]]]], ")"]], RowBox[List["\[Beta]", " ", "\[Nu]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "d", " ", "z"]]], " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["c", " ", "\[Beta]", " ", "\[Nu]"]]]], ")"]], " ", RowBox[List["AppellF1", "[", RowBox[List[RowBox[List[FractionBox["d", "c"], "-", RowBox[List["\[Beta]", " ", "\[Nu]"]]]], ",", RowBox[List[RowBox[List["-", "\[Beta]"]], " ", "\[Nu]"]], ",", RowBox[List[RowBox[List["-", "\[Beta]"]], " ", "\[Nu]"]], ",", RowBox[List["1", "+", FractionBox["d", "c"], "-", RowBox[List["\[Beta]", " ", "\[Nu]"]]]], ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "c", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]], ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "c", " ", "z"]]]]], RowBox[List["a", "-", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["d", "-", RowBox[List["c", " ", "\[Beta]", " ", "\[Nu]"]]]], ")"]], " ", RowBox[List["AppellF1", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["d", "+", RowBox[List["c", " ", "\[Beta]", " ", "\[Nu]"]]]], "c"]]], ",", RowBox[List[RowBox[List["-", "\[Beta]"]], " ", "\[Nu]"]], ",", RowBox[List[RowBox[List["-", "\[Beta]"]], " ", "\[Nu]"]], ",", RowBox[List["1", "-", FractionBox["d", "c"], "-", RowBox[List["\[Beta]", " ", "\[Nu]"]]]], ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "c", " ", "z"]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]], ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "c", " ", "z"]]]]], RowBox[List["a", "-", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]]]]]]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]], RowBox[List[RowBox[List["-", "\[Beta]"]], " ", "\[Nu]"]]], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]], "\[Nu]"], ")"]], "\[Beta]"]]], RowBox[List["2", " ", RowBox[List["(", RowBox[List["d", "-", RowBox[List["c", " ", "\[Beta]", " ", "\[Nu]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["c", " ", "\[Beta]", " ", "\[Nu]"]]]], ")"]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|