Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Sin






Mathematica Notation

Traditional Notation









Elementary Functions > Sin[z] > Integration > Indefinite integration > Involving functions of the direct function > Involving algebraic functions of the direct function > Involving ((a+b sin(c z))nu)beta sin(d z)





http://functions.wolfram.com/01.06.21.0900.01









  


  










Input Form





Integrate[Sin[c z]/Sqrt[(a + b Sin[c z])^5], z] == ((1/((a - b)^2 b)) (2 (a + b) ((a^2 + 3 b^2) EllipticE[(1/4) (Pi - 2 c z), (2 b)/(a + b)] + a (-a + b) EllipticF[(1/4) (Pi - 2 c z), (2 b)/(a + b)]) ((a + b Sin[c z])/(a + b))^(5/2)) - (1/(a^2 - b^2)^2) (2 Cos[c z] (a + b Sin[c z]) (2 a (a^2 + b^2) + b (a^2 + 3 b^2) Sin[c z])))/(3 c Sqrt[(a + b Sin[c z])^5])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]], SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]], "5"]]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[FractionBox["1", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], "2"], " ", "b"]]], RowBox[List["(", RowBox[List["2", " ", RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", RowBox[List["3", " ", SuperscriptBox["b", "2"]]]]], ")"]], " ", RowBox[List["EllipticE", "[", RowBox[List[RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["\[Pi]", "-", RowBox[List["2", " ", "c", " ", "z"]]]], ")"]]]], ",", FractionBox[RowBox[List["2", " ", "b"]], RowBox[List["a", "+", "b"]]]]], "]"]]]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b"]], ")"]], " ", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["\[Pi]", "-", RowBox[List["2", " ", "c", " ", "z"]]]], ")"]]]], ",", FractionBox[RowBox[List["2", " ", "b"]], RowBox[List["a", "+", "b"]]]]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], RowBox[List["a", "+", "b"]]], ")"]], RowBox[List["5", "/", "2"]]]]], ")"]]]], "-", RowBox[List[FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]], ")"]], "2"]], RowBox[List["(", RowBox[List["2", " ", RowBox[List["Cos", "[", RowBox[List["c", " ", "z"]], "]"]], " ", RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a", " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"]]], ")"]]]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", RowBox[List["3", " ", SuperscriptBox["b", "2"]]]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]]]], ")"]]]]]], ")"]], "/", RowBox[List["(", RowBox[List["3", " ", "c", " ", SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]], "5"]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mfrac> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <msqrt> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 5 </mn> </msup> </msqrt> </mfrac> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <msqrt> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 5 </mn> </msup> </msqrt> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mi> b </mi> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> E </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#10072; </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> F </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#10072; </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <sin /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <sin /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='integer'> 5 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> c </ci> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <sin /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='integer'> 5 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <ci> EllipticE </ci> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <plus /> <pi /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <ci> a </ci> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <apply> <ci> EllipticF </ci> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <plus /> <pi /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <sin /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <cos /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <sin /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <sin /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List["Sin", "[", RowBox[List["c_", " ", "z_"]], "]"]], SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List["a_", "+", RowBox[List["b_", " ", RowBox[List["Sin", "[", RowBox[List["c_", " ", "z_"]], "]"]]]]]], ")"]], "5"]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[FractionBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", RowBox[List["3", " ", SuperscriptBox["b", "2"]]]]], ")"]], " ", RowBox[List["EllipticE", "[", RowBox[List[RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["\[Pi]", "-", RowBox[List["2", " ", "c", " ", "z"]]]], ")"]]]], ",", FractionBox[RowBox[List["2", " ", "b"]], RowBox[List["a", "+", "b"]]]]], "]"]]]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b"]], ")"]], " ", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["\[Pi]", "-", RowBox[List["2", " ", "c", " ", "z"]]]], ")"]]]], ",", FractionBox[RowBox[List["2", " ", "b"]], RowBox[List["a", "+", "b"]]]]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], RowBox[List["a", "+", "b"]]], ")"]], RowBox[List["5", "/", "2"]]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], "2"], " ", "b"]]], "-", FractionBox[RowBox[List["2", " ", RowBox[List["Cos", "[", RowBox[List["c", " ", "z"]], "]"]], " ", RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a", " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"]]], ")"]]]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", RowBox[List["3", " ", SuperscriptBox["b", "2"]]]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]]]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]], ")"]], "2"]]]], RowBox[List["3", " ", "c", " ", SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]], "5"]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18