Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Sin






Mathematica Notation

Traditional Notation









Elementary Functions > Sin[z] > Integration > Indefinite integration > Involving functions of the direct function > Involving algebraic functions of the direct function > Involving (a+b sin(c z))betaand rational function of sin(c z)





http://functions.wolfram.com/01.06.21.0908.01









  


  










Input Form





Integrate[1/((d + e Sin[c z])^2 Sqrt[a + b Sin[c z]]), z] == (1/(4 c ((-b) d + a e))) (-((4 e^2 Cos[c z] Sqrt[a + b Sin[c z]])/ ((-d^2 + e^2) (d + e Sin[c z]))) + (1/(d^2 - e^2)) (-((8 I d (((-b) d + a e) EllipticF[I ArcSinh[Sqrt[-(1/(a + b))] Sqrt[a + b Sin[c z]]], (a + b)/(a - b)] + b d EllipticPi[((a + b) e)/((-b) d + a e), I ArcSinh[Sqrt[-(1/(a + b))] Sqrt[a + b Sin[c z]]], (a + b)/(a - b)]) Sec[c z] Sqrt[(b (1 + Sin[c z]))/(-a + b)] Sqrt[(b - b Sin[c z])/(a + b)])/(Sqrt[-(1/(a + b))] ((-b) d + a e))) - (I (Cos[c z] + Cos[3 c z]) (2 (a - b) e ((-b) d + a e) EllipticE[ I ArcSinh[Sqrt[-(1/(a + b))] Sqrt[a + b Sin[c z]]], (a + b)/(a - b)] + b (-2 (d + e) (b d - a e) EllipticF[I ArcSinh[Sqrt[-(1/(a + b))] Sqrt[a + b Sin[c z]]], (a + b)/(a - b)] + b (2 d^2 - e^2) EllipticPi[ ((a + b) e)/((-b) d + a e), I ArcSinh[Sqrt[-(1/(a + b))] Sqrt[ a + b Sin[c z]]], (a + b)/(a - b)])) Sec[c z]^2 Sec[2 c z] Sqrt[(b (1 + Sin[c z]))/(-a + b)] Sqrt[(b - b Sin[c z])/(a + b)])/ (b Sqrt[-(1/(a + b))] (b d - a e)) + (2 (4 b d^2 - 4 a d e - 3 b e^2) EllipticPi[(2 e)/(d + e), (1/4) (Pi - 2 c z), (2 b)/(a + b)] Sqrt[(a + b Sin[c z])/(a + b)])/ ((d + e) Sqrt[a + b Sin[c z]])))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox["1", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["e", " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]], "2"], " ", SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]]]]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["4", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", "d"]], "+", RowBox[List["a", " ", "e"]]]], ")"]]]]], RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["4", " ", SuperscriptBox["e", "2"], " ", RowBox[List["Cos", "[", RowBox[List["c", " ", "z"]], "]"]], " ", SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox["d", "2"]]], "+", SuperscriptBox["e", "2"]]], ")"]], " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["e", " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]]]]]]], "+", RowBox[List[FractionBox["1", RowBox[List[SuperscriptBox["d", "2"], "-", SuperscriptBox["e", "2"]]]], RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List[RowBox[List["(", RowBox[List["8", " ", "\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", "d"]], "+", RowBox[List["a", " ", "e"]]]], ")"]], " ", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSinh", "[", RowBox[List[SqrtBox[RowBox[List["-", FractionBox["1", RowBox[List["a", "+", "b"]]]]]], " ", SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]]]], "]"]]]], ",", FractionBox[RowBox[List["a", "+", "b"]], RowBox[List["a", "-", "b"]]]]], "]"]]]], "+", RowBox[List["b", " ", "d", " ", RowBox[List["EllipticPi", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", "e"]], RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", "d"]], "+", RowBox[List["a", " ", "e"]]]]], ",", RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSinh", "[", RowBox[List[SqrtBox[RowBox[List["-", FractionBox["1", RowBox[List["a", "+", "b"]]]]]], " ", SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]]]], "]"]]]], ",", FractionBox[RowBox[List["a", "+", "b"]], RowBox[List["a", "-", "b"]]]]], "]"]]]]]], ")"]], " ", RowBox[List["Sec", "[", RowBox[List["c", " ", "z"]], "]"]], " ", SqrtBox[FractionBox[RowBox[List["b", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]], ")"]]]], RowBox[List[RowBox[List["-", "a"]], "+", "b"]]]], " ", SqrtBox[FractionBox[RowBox[List["b", "-", RowBox[List["b", " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], RowBox[List["a", "+", "b"]]]]]], ")"]], "/", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["-", FractionBox["1", RowBox[List["a", "+", "b"]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", "d"]], "+", RowBox[List["a", " ", "e"]]]], ")"]]]], ")"]]]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", RowBox[List["c", " ", "z"]], "]"]], "+", RowBox[List["Cos", "[", RowBox[List["3", " ", "c", " ", "z"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", "e", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", "d"]], "+", RowBox[List["a", " ", "e"]]]], ")"]], " ", RowBox[List["EllipticE", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSinh", "[", RowBox[List[SqrtBox[RowBox[List["-", FractionBox["1", RowBox[List["a", "+", "b"]]]]]], " ", SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]]]], "]"]]]], ",", FractionBox[RowBox[List["a", "+", "b"]], RowBox[List["a", "-", "b"]]]]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["d", "+", "e"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "d"]], "-", RowBox[List["a", " ", "e"]]]], ")"]], " ", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSinh", "[", RowBox[List[SqrtBox[RowBox[List["-", FractionBox["1", RowBox[List["a", "+", "b"]]]]]], " ", SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]]]], "]"]]]], ",", FractionBox[RowBox[List["a", "+", "b"]], RowBox[List["a", "-", "b"]]]]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox["d", "2"]]], "-", SuperscriptBox["e", "2"]]], ")"]], " ", RowBox[List["EllipticPi", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", "e"]], RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", "d"]], "+", RowBox[List["a", " ", "e"]]]]], ",", RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSinh", "[", RowBox[List[SqrtBox[RowBox[List["-", FractionBox["1", RowBox[List["a", "+", "b"]]]]]], " ", SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]]]], "]"]]]], ",", FractionBox[RowBox[List["a", "+", "b"]], RowBox[List["a", "-", "b"]]]]], "]"]]]]]], ")"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Sec", "[", RowBox[List["c", " ", "z"]], "]"]], "2"], " ", RowBox[List["Sec", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]], " ", SqrtBox[FractionBox[RowBox[List["b", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]], ")"]]]], RowBox[List[RowBox[List["-", "a"]], "+", "b"]]]], " ", SqrtBox[FractionBox[RowBox[List["b", "-", RowBox[List["b", " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], RowBox[List["a", "+", "b"]]]]]], ")"]], "/", RowBox[List["(", RowBox[List["b", " ", SqrtBox[RowBox[List["-", FractionBox["1", RowBox[List["a", "+", "b"]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "d"]], "-", RowBox[List["a", " ", "e"]]]], ")"]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["4", " ", "b", " ", SuperscriptBox["d", "2"]]], "-", RowBox[List["4", " ", "a", " ", "d", " ", "e"]], "-", RowBox[List["3", " ", "b", " ", SuperscriptBox["e", "2"]]]]], ")"]], " ", RowBox[List["EllipticPi", "[", RowBox[List[FractionBox[RowBox[List["2", " ", "e"]], RowBox[List["d", "+", "e"]]], ",", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["\[Pi]", "-", RowBox[List["2", " ", "c", " ", "z"]]]], ")"]]]], ",", FractionBox[RowBox[List["2", " ", "b"]], RowBox[List["a", "+", "b"]]]]], "]"]], " ", SqrtBox[FractionBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], RowBox[List["a", "+", "b"]]]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["d", "+", "e"]], ")"]], " ", SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> e </mi> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> d </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mrow> <msup> <mi> d </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> e </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <msqrt> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> e </mi> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> d </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> d </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> e </mi> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> d </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> F </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> sinh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <msqrt> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#10072; </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> d </mi> <mo> &#8290; </mo> <mrow> <mi> &#928; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> e </mi> </mrow> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> e </mi> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> d </mi> </mrow> </mrow> </mfrac> <mo> ; </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> sinh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <msqrt> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#10072; </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sec </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mfrac> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> b </mi> <mo> - </mo> <mi> a </mi> </mrow> </mfrac> </msqrt> <mo> &#8290; </mo> <msqrt> <mfrac> <mrow> <mi> b </mi> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> d </mi> </mrow> <mo> - </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> e </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> e </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> e </mi> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> d </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> E </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> sinh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <msqrt> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#10072; </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> d </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <msup> <mi> e </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#928; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> e </mi> </mrow> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> e </mi> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> d </mi> </mrow> </mrow> </mfrac> <mo> ; </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> sinh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <msqrt> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#10072; </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mi> e </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> d </mi> </mrow> <mo> - </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> e </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> F </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> sinh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <msqrt> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#10072; </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> sec </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sec </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mfrac> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> b </mi> <mo> - </mo> <mi> a </mi> </mrow> </mfrac> </msqrt> <mo> &#8290; </mo> <msqrt> <mfrac> <mrow> <mi> b </mi> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> d </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> e </mi> <mo> &#8290; </mo> <mi> d </mi> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> e </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#928; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> e </mi> </mrow> <mrow> <mi> d </mi> <mo> + </mo> <mi> e </mi> </mrow> </mfrac> <mo> ; </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#10072; </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> </msqrt> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mi> e </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mfrac> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> e </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> e </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> d </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> d </ci> <apply> <times /> <ci> e </ci> <apply> <sin /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <sin /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> c </ci> <apply> <plus /> <apply> <times /> <ci> a </ci> <ci> e </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <ci> d </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <ci> a </ci> <ci> e </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <ci> d </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <imaginaryi /> <ci> d </ci> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> a </ci> <ci> e </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <ci> d </ci> </apply> </apply> </apply> <apply> <ci> EllipticF </ci> <apply> <times /> <imaginaryi /> <apply> <arcsinh /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <sin /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <ci> b </ci> <ci> d </ci> <apply> <ci> EllipticPi </ci> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <ci> e </ci> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> a </ci> <ci> e </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <ci> d </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <imaginaryi /> <apply> <arcsinh /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <sin /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <sec /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <times /> <ci> b </ci> <apply> <plus /> <apply> <sin /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <sin /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <ci> b </ci> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <ci> e </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <cos /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <cos /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <ci> e </ci> <apply> <plus /> <apply> <times /> <ci> a </ci> <ci> e </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <ci> d </ci> </apply> </apply> </apply> <apply> <ci> EllipticE </ci> <apply> <times /> <imaginaryi /> <apply> <arcsinh /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <sin /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <ci> EllipticPi </ci> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <ci> e </ci> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> a </ci> <ci> e </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <ci> d </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <imaginaryi /> <apply> <arcsinh /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <sin /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> d </ci> <ci> e </ci> </apply> <apply> <plus /> <apply> <times /> <ci> b </ci> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <ci> e </ci> </apply> </apply> </apply> <apply> <ci> EllipticF </ci> <apply> <times /> <imaginaryi /> <apply> <arcsinh /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <sin /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <sec /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <sec /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <times /> <ci> b </ci> <apply> <plus /> <apply> <sin /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <sin /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> b </ci> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <ci> e </ci> <ci> d </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <ci> b </ci> <apply> <power /> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <ci> EllipticPi </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <apply> <power /> <apply> <plus /> <ci> d </ci> <ci> e </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <plus /> <pi /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <sin /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> d </ci> <ci> e </ci> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <sin /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> <apply> <cos /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <sin /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <ci> d </ci> <apply> <times /> <ci> e </ci> <apply> <sin /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox["1", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["d_", "+", RowBox[List["e_", " ", RowBox[List["Sin", "[", RowBox[List["c_", " ", "z_"]], "]"]]]]]], ")"]], "2"], " ", SqrtBox[RowBox[List["a_", "+", RowBox[List["b_", " ", RowBox[List["Sin", "[", RowBox[List["c_", " ", "z_"]], "]"]]]]]]]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["-", FractionBox[RowBox[List["4", " ", SuperscriptBox["e", "2"], " ", RowBox[List["Cos", "[", RowBox[List["c", " ", "z"]], "]"]], " ", SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox["d", "2"]]], "+", SuperscriptBox["e", "2"]]], ")"]], " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["e", " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]]]]]]], "+", FractionBox[RowBox[List[RowBox[List["-", FractionBox[RowBox[List["8", " ", "\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", "d"]], "+", RowBox[List["a", " ", "e"]]]], ")"]], " ", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSinh", "[", RowBox[List[SqrtBox[RowBox[List["-", FractionBox["1", RowBox[List["a", "+", "b"]]]]]], " ", SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]]]], "]"]]]], ",", FractionBox[RowBox[List["a", "+", "b"]], RowBox[List["a", "-", "b"]]]]], "]"]]]], "+", RowBox[List["b", " ", "d", " ", RowBox[List["EllipticPi", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", "e"]], RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", "d"]], "+", RowBox[List["a", " ", "e"]]]]], ",", RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSinh", "[", RowBox[List[SqrtBox[RowBox[List["-", FractionBox["1", RowBox[List["a", "+", "b"]]]]]], " ", SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]]]], "]"]]]], ",", FractionBox[RowBox[List["a", "+", "b"]], RowBox[List["a", "-", "b"]]]]], "]"]]]]]], ")"]], " ", RowBox[List["Sec", "[", RowBox[List["c", " ", "z"]], "]"]], " ", SqrtBox[FractionBox[RowBox[List["b", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]], ")"]]]], RowBox[List[RowBox[List["-", "a"]], "+", "b"]]]], " ", SqrtBox[FractionBox[RowBox[List["b", "-", RowBox[List["b", " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], RowBox[List["a", "+", "b"]]]]]], RowBox[List[SqrtBox[RowBox[List["-", FractionBox["1", RowBox[List["a", "+", "b"]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", "d"]], "+", RowBox[List["a", " ", "e"]]]], ")"]]]]]]], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", RowBox[List["c", " ", "z"]], "]"]], "+", RowBox[List["Cos", "[", RowBox[List["3", " ", "c", " ", "z"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", "e", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", "d"]], "+", RowBox[List["a", " ", "e"]]]], ")"]], " ", RowBox[List["EllipticE", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSinh", "[", RowBox[List[SqrtBox[RowBox[List["-", FractionBox["1", RowBox[List["a", "+", "b"]]]]]], " ", SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]]]], "]"]]]], ",", FractionBox[RowBox[List["a", "+", "b"]], RowBox[List["a", "-", "b"]]]]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["d", "+", "e"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "d"]], "-", RowBox[List["a", " ", "e"]]]], ")"]], " ", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSinh", "[", RowBox[List[SqrtBox[RowBox[List["-", FractionBox["1", RowBox[List["a", "+", "b"]]]]]], " ", SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]]]], "]"]]]], ",", FractionBox[RowBox[List["a", "+", "b"]], RowBox[List["a", "-", "b"]]]]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox["d", "2"]]], "-", SuperscriptBox["e", "2"]]], ")"]], " ", RowBox[List["EllipticPi", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", "e"]], RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", "d"]], "+", RowBox[List["a", " ", "e"]]]]], ",", RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSinh", "[", RowBox[List[SqrtBox[RowBox[List["-", FractionBox["1", RowBox[List["a", "+", "b"]]]]]], " ", SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]]]], "]"]]]], ",", FractionBox[RowBox[List["a", "+", "b"]], RowBox[List["a", "-", "b"]]]]], "]"]]]]]], ")"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Sec", "[", RowBox[List["c", " ", "z"]], "]"]], "2"], " ", RowBox[List["Sec", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]], " ", SqrtBox[FractionBox[RowBox[List["b", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]], ")"]]]], RowBox[List[RowBox[List["-", "a"]], "+", "b"]]]], " ", SqrtBox[FractionBox[RowBox[List["b", "-", RowBox[List["b", " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], RowBox[List["a", "+", "b"]]]]]], RowBox[List["b", " ", SqrtBox[RowBox[List["-", FractionBox["1", RowBox[List["a", "+", "b"]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "d"]], "-", RowBox[List["a", " ", "e"]]]], ")"]]]]], "+", FractionBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["4", " ", "b", " ", SuperscriptBox["d", "2"]]], "-", RowBox[List["4", " ", "a", " ", "d", " ", "e"]], "-", RowBox[List["3", " ", "b", " ", SuperscriptBox["e", "2"]]]]], ")"]], " ", RowBox[List["EllipticPi", "[", RowBox[List[FractionBox[RowBox[List["2", " ", "e"]], RowBox[List["d", "+", "e"]]], ",", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["\[Pi]", "-", RowBox[List["2", " ", "c", " ", "z"]]]], ")"]]]], ",", FractionBox[RowBox[List["2", " ", "b"]], RowBox[List["a", "+", "b"]]]]], "]"]], " ", SqrtBox[FractionBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], RowBox[List["a", "+", "b"]]]]]], RowBox[List[RowBox[List["(", RowBox[List["d", "+", "e"]], ")"]], " ", SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]]]]]]], RowBox[List[SuperscriptBox["d", "2"], "-", SuperscriptBox["e", "2"]]]]]], RowBox[List["4", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", "d"]], "+", RowBox[List["a", " ", "e"]]]], ")"]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18