|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.06.21.0992.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[1/((d + e Sin[c z])^3 Sqrt[a + b Sin[c z]^2]), z] ==
-(((a^2 e^4 (2 d^2 + e^2) + a b e^2 (5 d^4 + 2 d^2 e^2 - e^4) +
b^2 (6 d^6 - 5 d^4 e^2 + 2 d^2 e^4))
ArcTanh[(Sqrt[2 + (2 b d^2)/(a e^2)] Cos[c z])/(Sqrt[1 - d^2/e^2]
Sqrt[(2 a + b - b Cos[2 c z])/a])] Sqrt[(2 a + b - b Cos[2 c z])/a])/
(2 c Sqrt[1 - d^2/e^2] Sqrt[1 + (b d^2)/(a e^2)] e (d^2 - e^2)^2
(b d^2 + a e^2)^2 Sqrt[2 a + b - b Cos[2 c z]])) +
(3 d e^2 (2 b d^2 + a e^2 - b e^2) Sqrt[2 a + b - b Cos[2 c z]]
EllipticE[c z, -(b/a)])/(2 c (d^2 - e^2)^2 (b d^2 + a e^2)^2
Sqrt[(2 a + b - b Cos[2 c z])/a]) -
(d (4 b d^2 + 3 a e^2 - b e^2) Sqrt[(2 a + b - b Cos[2 c z])/a]
EllipticF[c z, -(b/a)])/(2 c (d^2 - e^2)^2 (b d^2 + a e^2)
Sqrt[2 a + b - b Cos[2 c z]]) +
((a^2 e^4 (2 d^2 + e^2) + a b e^2 (5 d^4 + 2 d^2 e^2 - e^4) +
b^2 (6 d^6 - 5 d^4 e^2 + 2 d^2 e^4)) Sqrt[(2 a + b - b Cos[2 c z])/a]
EllipticPi[e^2/d^2, c z, -(b/a)])/(2 c d (d^2 - e^2)^2 (b d^2 + a e^2)^2
Sqrt[2 a + b - b Cos[2 c z]]) +
(4 Sqrt[2] e^3 Cos[c z] (-d + e Sin[c z])^5 (d + e Sin[c z])^3
(-28 a b d^4 - 14 b^2 d^4 - 16 a^2 d^2 e^2 + 8 a b d^2 e^2 +
8 b^2 d^2 e^2 + 4 a^2 e^4 + 2 a b e^4 +
2 b (7 b d^4 + 4 a d^2 e^2 - 4 b d^2 e^2 - a e^4) Cos[2 c z] -
3 (4 a + 3 b) d e (2 b d^2 + a e^2 - b e^2) Sin[c z] +
6 b^2 d^3 e Sin[3 c z] + 3 a b d e^3 Sin[3 c z] -
3 b^2 d e^3 Sin[3 c z]))/(c (d^2 - e^2)^2 (b d^2 + a e^2)^2
Sqrt[2 a + b - b Cos[2 c z]] (2 d^2 - e^2 + e^2 Cos[2 c z])^5)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox["1", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["e", " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]], "3"], " ", SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]], "2"]]]]]]]]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["e", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox["d", "2"]]], "+", SuperscriptBox["e", "2"]]], ")"]]]], "+", RowBox[List["a", " ", "b", " ", SuperscriptBox["e", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["5", " ", SuperscriptBox["d", "4"]]], "+", RowBox[List["2", " ", SuperscriptBox["d", "2"], " ", SuperscriptBox["e", "2"]]], "-", SuperscriptBox["e", "4"]]], ")"]]]], "+", RowBox[List[SuperscriptBox["b", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["6", " ", SuperscriptBox["d", "6"]]], "-", RowBox[List["5", " ", SuperscriptBox["d", "4"], " ", SuperscriptBox["e", "2"]]], "+", RowBox[List["2", " ", SuperscriptBox["d", "2"], " ", SuperscriptBox["e", "4"]]]]], ")"]]]]]], ")"]], " ", RowBox[List["ArcTanh", "[", FractionBox[RowBox[List[SqrtBox[RowBox[List["2", "+", FractionBox[RowBox[List["2", " ", "b", " ", SuperscriptBox["d", "2"]]], RowBox[List["a", " ", SuperscriptBox["e", "2"]]]]]]], " ", RowBox[List["Cos", "[", RowBox[List["c", " ", "z"]], "]"]]]], RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["d", "2"], SuperscriptBox["e", "2"]]]]], " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]], "a"]]]]], "]"]], " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]], "a"]]]], ")"]], "/", RowBox[List["(", RowBox[List["2", " ", "c", " ", SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["d", "2"], SuperscriptBox["e", "2"]]]]], " ", SqrtBox[RowBox[List["1", "+", FractionBox[RowBox[List["b", " ", SuperscriptBox["d", "2"]]], RowBox[List["a", " ", SuperscriptBox["e", "2"]]]]]]], " ", "e", " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["d", "2"], "-", SuperscriptBox["e", "2"]]], ")"]], "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["b", " ", SuperscriptBox["d", "2"]]], "+", RowBox[List["a", " ", SuperscriptBox["e", "2"]]]]], ")"]], "2"], " ", SqrtBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]]]]], ")"]]]]]], "+", FractionBox[RowBox[List["3", " ", "d", " ", SuperscriptBox["e", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "b", " ", SuperscriptBox["d", "2"]]], "+", RowBox[List["a", " ", SuperscriptBox["e", "2"]]], "-", RowBox[List["b", " ", SuperscriptBox["e", "2"]]]]], ")"]], " ", SqrtBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]]], " ", RowBox[List["EllipticE", "[", RowBox[List[RowBox[List["c", " ", "z"]], ",", RowBox[List["-", FractionBox["b", "a"]]]]], "]"]]]], RowBox[List["2", " ", "c", " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["d", "2"], "-", SuperscriptBox["e", "2"]]], ")"]], "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["b", " ", SuperscriptBox["d", "2"]]], "+", RowBox[List["a", " ", SuperscriptBox["e", "2"]]]]], ")"]], "2"], " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]], "a"]]]]], "-", FractionBox[RowBox[List["d", " ", RowBox[List["(", RowBox[List[RowBox[List["4", " ", "b", " ", SuperscriptBox["d", "2"]]], "+", RowBox[List["3", " ", "a", " ", SuperscriptBox["e", "2"]]], "-", RowBox[List["b", " ", SuperscriptBox["e", "2"]]]]], ")"]], " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]], "a"]], " ", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["c", " ", "z"]], ",", RowBox[List["-", FractionBox["b", "a"]]]]], "]"]]]], RowBox[List["2", " ", "c", " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["d", "2"], "-", SuperscriptBox["e", "2"]]], ")"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", SuperscriptBox["d", "2"]]], "+", RowBox[List["a", " ", SuperscriptBox["e", "2"]]]]], ")"]], " ", SqrtBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["e", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox["d", "2"]]], "+", SuperscriptBox["e", "2"]]], ")"]]]], "+", RowBox[List["a", " ", "b", " ", SuperscriptBox["e", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["5", " ", SuperscriptBox["d", "4"]]], "+", RowBox[List["2", " ", SuperscriptBox["d", "2"], " ", SuperscriptBox["e", "2"]]], "-", SuperscriptBox["e", "4"]]], ")"]]]], "+", RowBox[List[SuperscriptBox["b", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["6", " ", SuperscriptBox["d", "6"]]], "-", RowBox[List["5", " ", SuperscriptBox["d", "4"], " ", SuperscriptBox["e", "2"]]], "+", RowBox[List["2", " ", SuperscriptBox["d", "2"], " ", SuperscriptBox["e", "4"]]]]], ")"]]]]]], ")"]], " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]], "a"]], " ", RowBox[List["EllipticPi", "[", RowBox[List[FractionBox[SuperscriptBox["e", "2"], SuperscriptBox["d", "2"]], ",", RowBox[List["c", " ", "z"]], ",", RowBox[List["-", FractionBox["b", "a"]]]]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List["2", " ", "c", " ", "d", " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["d", "2"], "-", SuperscriptBox["e", "2"]]], ")"]], "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["b", " ", SuperscriptBox["d", "2"]]], "+", RowBox[List["a", " ", SuperscriptBox["e", "2"]]]]], ")"]], "2"], " ", SqrtBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["4", " ", SqrtBox["2"], " ", SuperscriptBox["e", "3"], " ", RowBox[List["Cos", "[", RowBox[List["c", " ", "z"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "d"]], "+", RowBox[List["e", " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]], "5"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["e", " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]], "3"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "28"]], " ", "a", " ", "b", " ", SuperscriptBox["d", "4"]]], "-", RowBox[List["14", " ", SuperscriptBox["b", "2"], " ", SuperscriptBox["d", "4"]]], "-", RowBox[List["16", " ", SuperscriptBox["a", "2"], " ", SuperscriptBox["d", "2"], " ", SuperscriptBox["e", "2"]]], "+", RowBox[List["8", " ", "a", " ", "b", " ", SuperscriptBox["d", "2"], " ", SuperscriptBox["e", "2"]]], "+", RowBox[List["8", " ", SuperscriptBox["b", "2"], " ", SuperscriptBox["d", "2"], " ", SuperscriptBox["e", "2"]]], "+", RowBox[List["4", " ", SuperscriptBox["a", "2"], " ", SuperscriptBox["e", "4"]]], "+", RowBox[List["2", " ", "a", " ", "b", " ", SuperscriptBox["e", "4"]]], "+", RowBox[List["2", " ", "b", " ", RowBox[List["(", RowBox[List[RowBox[List["7", " ", "b", " ", SuperscriptBox["d", "4"]]], "+", RowBox[List["4", " ", "a", " ", SuperscriptBox["d", "2"], " ", SuperscriptBox["e", "2"]]], "-", RowBox[List["4", " ", "b", " ", SuperscriptBox["d", "2"], " ", SuperscriptBox["e", "2"]]], "-", RowBox[List["a", " ", SuperscriptBox["e", "4"]]]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]], "-", RowBox[List["3", " ", RowBox[List["(", RowBox[List[RowBox[List["4", " ", "a"]], "+", RowBox[List["3", " ", "b"]]]], ")"]], " ", "d", " ", "e", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "b", " ", SuperscriptBox["d", "2"]]], "+", RowBox[List["a", " ", SuperscriptBox["e", "2"]]], "-", RowBox[List["b", " ", SuperscriptBox["e", "2"]]]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]], "+", RowBox[List["6", " ", SuperscriptBox["b", "2"], " ", SuperscriptBox["d", "3"], " ", "e", " ", RowBox[List["Sin", "[", RowBox[List["3", " ", "c", " ", "z"]], "]"]]]], "+", RowBox[List["3", " ", "a", " ", "b", " ", "d", " ", SuperscriptBox["e", "3"], " ", RowBox[List["Sin", "[", RowBox[List["3", " ", "c", " ", "z"]], "]"]]]], "-", RowBox[List["3", " ", SuperscriptBox["b", "2"], " ", "d", " ", SuperscriptBox["e", "3"], " ", RowBox[List["Sin", "[", RowBox[List["3", " ", "c", " ", "z"]], "]"]]]]]], ")"]]]], ")"]], "/", RowBox[List["(", RowBox[List["c", " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["d", "2"], "-", SuperscriptBox["e", "2"]]], ")"]], "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["b", " ", SuperscriptBox["d", "2"]]], "+", RowBox[List["a", " ", SuperscriptBox["e", "2"]]]]], ")"]], "2"], " ", SqrtBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox["d", "2"]]], "-", SuperscriptBox["e", "2"], "+", RowBox[List[SuperscriptBox["e", "2"], " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]], ")"]], "5"]]], ")"]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> ∫ </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> d </mi> <mo> ⁢ </mo> <msup> <mi> e </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> d </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <msup> <mi> e </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> e </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mi> E </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ❘ </mo> <mrow> <mo> - </mo> <mfrac> <mi> b </mi> <mi> a </mi> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> d </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> e </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> d </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <msup> <mi> e </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msqrt> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mi> a </mi> </mfrac> </msqrt> </mrow> </mfrac> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> d </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <msup> <mi> e </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> e </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 5 </mn> <mo> ⁢ </mo> <msup> <mi> d </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> e </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> d </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <msup> <mi> e </mi> <mn> 4 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> e </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 6 </mn> <mo> ⁢ </mo> <msup> <mi> d </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 5 </mn> <mo> ⁢ </mo> <msup> <mi> e </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> d </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> e </mi> <mn> 4 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> d </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mi> a </mi> </mfrac> </msqrt> <mo> ⁢ </mo> <mrow> <mi> Π </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <msup> <mi> e </mi> <mn> 2 </mn> </msup> <msup> <mi> d </mi> <mn> 2 </mn> </msup> </mfrac> <mo> ; </mo> <mrow> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ❘ </mo> <mrow> <mo> - </mo> <mfrac> <mi> b </mi> <mi> a </mi> </mfrac> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> d </mi> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> d </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> e </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> d </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <msup> <mi> e </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> ⁢ </mo> <msup> <mi> e </mi> <mn> 3 </mn> </msup> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mi> d </mi> </mrow> <mo> ) </mo> </mrow> <mn> 5 </mn> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 14 </mn> </mrow> <mo> ⁢ </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> d </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 28 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> d </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 6 </mn> <mo> ⁢ </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> d </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 16 </mn> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> e </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> d </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> e </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> d </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> e </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> d </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> d </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <msup> <mi> e </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> e </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> d </mi> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> e </mi> <mn> 3 </mn> </msup> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> d </mi> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> e </mi> <mn> 3 </mn> </msup> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> d </mi> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> e </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> e </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 7 </mn> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> d </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <msup> <mi> e </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> d </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> e </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> d </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <msup> <mi> e </mi> <mn> 4 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> d </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> e </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> d </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <msup> <mi> e </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> d </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <msup> <mi> e </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <msup> <mi> e </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 5 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mfrac> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> d </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <msup> <mi> e </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> e </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mi> a </mi> </mfrac> </msqrt> <mo> ⁢ </mo> <mrow> <mi> F </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ❘ </mo> <mrow> <mo> - </mo> <mfrac> <mi> b </mi> <mi> a </mi> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> d </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> e </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> d </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <msup> <mi> e </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mrow> </mfrac> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> d </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <msup> <mi> e </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> e </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 5 </mn> <mo> ⁢ </mo> <msup> <mi> d </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> e </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> d </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <msup> <mi> e </mi> <mn> 4 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> e </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 6 </mn> <mo> ⁢ </mo> <msup> <mi> d </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 5 </mn> <mo> ⁢ </mo> <msup> <mi> e </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> d </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> e </mi> <mn> 4 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> d </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <msqrt> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> d </mi> <mn> 2 </mn> </msup> </mrow> <mrow> <mi> a </mi> <mo> ⁢ </mo> <msup> <mi> e </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> + </mo> <mn> 2 </mn> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <msup> <mi> d </mi> <mn> 2 </mn> </msup> <msup> <mi> e </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mi> a </mi> </mfrac> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mi> a </mi> </mfrac> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <msup> <mi> d </mi> <mn> 2 </mn> </msup> <msup> <mi> e </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mfrac> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> d </mi> <mn> 2 </mn> </msup> </mrow> <mrow> <mi> a </mi> <mo> ⁢ </mo> <msup> <mi> e </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> d </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> e </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> d </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <msup> <mi> e </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> d </ci> <apply> <times /> <ci> e </ci> <apply> <sin /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <sin /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> d </ci> <apply> <power /> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> EllipticE </ci> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <ci> e </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <ci> a </ci> <ci> b </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <power /> <ci> d </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> e </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <power /> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <power /> <ci> d </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <power /> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> d </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> e </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> EllipticPi </ci> <apply> <times /> <apply> <power /> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> d </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> e </ci> <cn type='integer'> 3 </cn> </apply> <apply> <cos /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> e </ci> <apply> <sin /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> </apply> <cn type='integer'> 5 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> d </ci> <apply> <times /> <ci> e </ci> <apply> <sin /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -14 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> d </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 28 </cn> <ci> a </ci> <ci> b </ci> <apply> <power /> <ci> d </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <ci> e </ci> <apply> <sin /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <ci> d </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 16 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <ci> a </ci> <ci> b </ci> <apply> <power /> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <ci> b </ci> </apply> </apply> <ci> e </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <sin /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <ci> d </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> e </ci> <cn type='integer'> 3 </cn> </apply> <apply> <sin /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> <ci> d </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <ci> a </ci> <ci> b </ci> <apply> <power /> <ci> e </ci> <cn type='integer'> 3 </cn> </apply> <apply> <sin /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> e </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <ci> b </ci> <apply> <power /> <ci> e </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 7 </cn> <ci> b </ci> <apply> <power /> <ci> d </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <apply> <power /> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> b </ci> <apply> <power /> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> e </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> </apply> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <ci> c </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='integer'> 5 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> d </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> b </ci> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <ci> a </ci> <apply> <power /> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> EllipticF </ci> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <ci> e </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <ci> a </ci> <ci> b </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <power /> <ci> d </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> e </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <power /> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <power /> <ci> d </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <power /> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> d </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> e </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <arctanh /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <cos /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> e </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox["1", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["d_", "+", RowBox[List["e_", " ", RowBox[List["Sin", "[", RowBox[List["c_", " ", "z_"]], "]"]]]]]], ")"]], "3"], " ", SqrtBox[RowBox[List["a_", "+", RowBox[List["b_", " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["c_", " ", "z_"]], "]"]], "2"]]]]]]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["e", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox["d", "2"]]], "+", SuperscriptBox["e", "2"]]], ")"]]]], "+", RowBox[List["a", " ", "b", " ", SuperscriptBox["e", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["5", " ", SuperscriptBox["d", "4"]]], "+", RowBox[List["2", " ", SuperscriptBox["d", "2"], " ", SuperscriptBox["e", "2"]]], "-", SuperscriptBox["e", "4"]]], ")"]]]], "+", RowBox[List[SuperscriptBox["b", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["6", " ", SuperscriptBox["d", "6"]]], "-", RowBox[List["5", " ", SuperscriptBox["d", "4"], " ", SuperscriptBox["e", "2"]]], "+", RowBox[List["2", " ", SuperscriptBox["d", "2"], " ", SuperscriptBox["e", "4"]]]]], ")"]]]]]], ")"]], " ", RowBox[List["ArcTanh", "[", FractionBox[RowBox[List[SqrtBox[RowBox[List["2", "+", FractionBox[RowBox[List["2", " ", "b", " ", SuperscriptBox["d", "2"]]], RowBox[List["a", " ", SuperscriptBox["e", "2"]]]]]]], " ", RowBox[List["Cos", "[", RowBox[List["c", " ", "z"]], "]"]]]], RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["d", "2"], SuperscriptBox["e", "2"]]]]], " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]], "a"]]]]], "]"]], " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]], "a"]]]], RowBox[List["2", " ", "c", " ", SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["d", "2"], SuperscriptBox["e", "2"]]]]], " ", SqrtBox[RowBox[List["1", "+", FractionBox[RowBox[List["b", " ", SuperscriptBox["d", "2"]]], RowBox[List["a", " ", SuperscriptBox["e", "2"]]]]]]], " ", "e", " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["d", "2"], "-", SuperscriptBox["e", "2"]]], ")"]], "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["b", " ", SuperscriptBox["d", "2"]]], "+", RowBox[List["a", " ", SuperscriptBox["e", "2"]]]]], ")"]], "2"], " ", SqrtBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]]]]]]]], "+", FractionBox[RowBox[List["3", " ", "d", " ", SuperscriptBox["e", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "b", " ", SuperscriptBox["d", "2"]]], "+", RowBox[List["a", " ", SuperscriptBox["e", "2"]]], "-", RowBox[List["b", " ", SuperscriptBox["e", "2"]]]]], ")"]], " ", SqrtBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]]], " ", RowBox[List["EllipticE", "[", RowBox[List[RowBox[List["c", " ", "z"]], ",", RowBox[List["-", FractionBox["b", "a"]]]]], "]"]]]], RowBox[List["2", " ", "c", " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["d", "2"], "-", SuperscriptBox["e", "2"]]], ")"]], "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["b", " ", SuperscriptBox["d", "2"]]], "+", RowBox[List["a", " ", SuperscriptBox["e", "2"]]]]], ")"]], "2"], " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]], "a"]]]]], "-", FractionBox[RowBox[List["d", " ", RowBox[List["(", RowBox[List[RowBox[List["4", " ", "b", " ", SuperscriptBox["d", "2"]]], "+", RowBox[List["3", " ", "a", " ", SuperscriptBox["e", "2"]]], "-", RowBox[List["b", " ", SuperscriptBox["e", "2"]]]]], ")"]], " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]], "a"]], " ", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["c", " ", "z"]], ",", RowBox[List["-", FractionBox["b", "a"]]]]], "]"]]]], RowBox[List["2", " ", "c", " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["d", "2"], "-", SuperscriptBox["e", "2"]]], ")"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", SuperscriptBox["d", "2"]]], "+", RowBox[List["a", " ", SuperscriptBox["e", "2"]]]]], ")"]], " ", SqrtBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["e", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox["d", "2"]]], "+", SuperscriptBox["e", "2"]]], ")"]]]], "+", RowBox[List["a", " ", "b", " ", SuperscriptBox["e", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["5", " ", SuperscriptBox["d", "4"]]], "+", RowBox[List["2", " ", SuperscriptBox["d", "2"], " ", SuperscriptBox["e", "2"]]], "-", SuperscriptBox["e", "4"]]], ")"]]]], "+", RowBox[List[SuperscriptBox["b", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["6", " ", SuperscriptBox["d", "6"]]], "-", RowBox[List["5", " ", SuperscriptBox["d", "4"], " ", SuperscriptBox["e", "2"]]], "+", RowBox[List["2", " ", SuperscriptBox["d", "2"], " ", SuperscriptBox["e", "4"]]]]], ")"]]]]]], ")"]], " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]], "a"]], " ", RowBox[List["EllipticPi", "[", RowBox[List[FractionBox[SuperscriptBox["e", "2"], SuperscriptBox["d", "2"]], ",", RowBox[List["c", " ", "z"]], ",", RowBox[List["-", FractionBox["b", "a"]]]]], "]"]]]], RowBox[List["2", " ", "c", " ", "d", " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["d", "2"], "-", SuperscriptBox["e", "2"]]], ")"]], "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["b", " ", SuperscriptBox["d", "2"]]], "+", RowBox[List["a", " ", SuperscriptBox["e", "2"]]]]], ")"]], "2"], " ", SqrtBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]]]]]], "+", FractionBox[RowBox[List["4", " ", SqrtBox["2"], " ", SuperscriptBox["e", "3"], " ", RowBox[List["Cos", "[", RowBox[List["c", " ", "z"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "d"]], "+", RowBox[List["e", " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]], "5"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["e", " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]], "3"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "28"]], " ", "a", " ", "b", " ", SuperscriptBox["d", "4"]]], "-", RowBox[List["14", " ", SuperscriptBox["b", "2"], " ", SuperscriptBox["d", "4"]]], "-", RowBox[List["16", " ", SuperscriptBox["a", "2"], " ", SuperscriptBox["d", "2"], " ", SuperscriptBox["e", "2"]]], "+", RowBox[List["8", " ", "a", " ", "b", " ", SuperscriptBox["d", "2"], " ", SuperscriptBox["e", "2"]]], "+", RowBox[List["8", " ", SuperscriptBox["b", "2"], " ", SuperscriptBox["d", "2"], " ", SuperscriptBox["e", "2"]]], "+", RowBox[List["4", " ", SuperscriptBox["a", "2"], " ", SuperscriptBox["e", "4"]]], "+", RowBox[List["2", " ", "a", " ", "b", " ", SuperscriptBox["e", "4"]]], "+", RowBox[List["2", " ", "b", " ", RowBox[List["(", RowBox[List[RowBox[List["7", " ", "b", " ", SuperscriptBox["d", "4"]]], "+", RowBox[List["4", " ", "a", " ", SuperscriptBox["d", "2"], " ", SuperscriptBox["e", "2"]]], "-", RowBox[List["4", " ", "b", " ", SuperscriptBox["d", "2"], " ", SuperscriptBox["e", "2"]]], "-", RowBox[List["a", " ", SuperscriptBox["e", "4"]]]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]], "-", RowBox[List["3", " ", RowBox[List["(", RowBox[List[RowBox[List["4", " ", "a"]], "+", RowBox[List["3", " ", "b"]]]], ")"]], " ", "d", " ", "e", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "b", " ", SuperscriptBox["d", "2"]]], "+", RowBox[List["a", " ", SuperscriptBox["e", "2"]]], "-", RowBox[List["b", " ", SuperscriptBox["e", "2"]]]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]], "+", RowBox[List["6", " ", SuperscriptBox["b", "2"], " ", SuperscriptBox["d", "3"], " ", "e", " ", RowBox[List["Sin", "[", RowBox[List["3", " ", "c", " ", "z"]], "]"]]]], "+", RowBox[List["3", " ", "a", " ", "b", " ", "d", " ", SuperscriptBox["e", "3"], " ", RowBox[List["Sin", "[", RowBox[List["3", " ", "c", " ", "z"]], "]"]]]], "-", RowBox[List["3", " ", SuperscriptBox["b", "2"], " ", "d", " ", SuperscriptBox["e", "3"], " ", RowBox[List["Sin", "[", RowBox[List["3", " ", "c", " ", "z"]], "]"]]]]]], ")"]]]], RowBox[List["c", " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["d", "2"], "-", SuperscriptBox["e", "2"]]], ")"]], "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["b", " ", SuperscriptBox["d", "2"]]], "+", RowBox[List["a", " ", SuperscriptBox["e", "2"]]]]], ")"]], "2"], " ", SqrtBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox["d", "2"]]], "-", SuperscriptBox["e", "2"], "+", RowBox[List[SuperscriptBox["e", "2"], " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]], ")"]], "5"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|