|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.06.21.0993.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[Sin[c z]/((d + e Sin[c z])^2 Sqrt[a + b Sin[c z]^2]), z] ==
(((b d^4 + a e^4) Sqrt[(2 a + b - b Cos[2 c z])/a])/
(c d e (-d^2 + e^2) (b d^2 + a e^2) Sqrt[2 a + b - b Cos[2 c z]]))
EllipticPi[e^2/d^2, c z, -(b/a)] -
((d e Sqrt[2 a + b - b Cos[2 c z]])/(c (d^2 - e^2) (b d^2 + a e^2)
Sqrt[(2 a + b - b Cos[2 c z])/a])) EllipticE[c z, -(b/a)] +
((d Sqrt[(2 a + b - b Cos[2 c z])/a])/(c e (d^2 - e^2)
Sqrt[2 a + b - b Cos[2 c z]])) EllipticF[c z, -(b/a)] -
(((b d^4 + a e^4) Sqrt[(2 a + b - b Cos[2 c z])/a])/
(c Sqrt[1 - d^2/e^2] Sqrt[1 + (b d^2)/(a e^2)] e^2 (-d^2 + e^2)
(b d^2 + a e^2) Sqrt[2 a + b - b Cos[2 c z]]))
ArcTanh[(Sqrt[2 + (2 b d^2)/(a e^2)] Cos[c z])/(Sqrt[1 - d^2/e^2]
Sqrt[(2 a + b - b Cos[2 c z])/a])] -
(d e^2 Cos[c z] Sqrt[2 a + b - b Cos[2 c z]])/(Sqrt[2] c (d^2 - e^2)
(b d^2 + a e^2) (d + e Sin[c z]))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["e", " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]], "2"], " ", SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]], "2"]]]]]]]]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["b", " ", SuperscriptBox["d", "4"]]], "+", RowBox[List["a", " ", SuperscriptBox["e", "4"]]]]], ")"]], " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]], "a"]]]], RowBox[List["c", " ", "d", " ", "e", " ", RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox["d", "2"]]], "+", SuperscriptBox["e", "2"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", SuperscriptBox["d", "2"]]], "+", RowBox[List["a", " ", SuperscriptBox["e", "2"]]]]], ")"]], " ", SqrtBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]]]]]], RowBox[List["EllipticPi", "[", RowBox[List[FractionBox[SuperscriptBox["e", "2"], SuperscriptBox["d", "2"]], ",", RowBox[List["c", " ", "z"]], ",", RowBox[List["-", FractionBox["b", "a"]]]]], "]"]]]], "-", RowBox[List[FractionBox[RowBox[List["d", " ", "e", " ", SqrtBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]]]]], RowBox[List["c", " ", RowBox[List["(", RowBox[List[SuperscriptBox["d", "2"], "-", SuperscriptBox["e", "2"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", SuperscriptBox["d", "2"]]], "+", RowBox[List["a", " ", SuperscriptBox["e", "2"]]]]], ")"]], " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]], "a"]]]]], RowBox[List["EllipticE", "[", RowBox[List[RowBox[List["c", " ", "z"]], ",", RowBox[List["-", FractionBox["b", "a"]]]]], "]"]]]], "+", RowBox[List[FractionBox[RowBox[List["d", " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]], "a"]]]], RowBox[List["c", " ", "e", " ", RowBox[List["(", RowBox[List[SuperscriptBox["d", "2"], "-", SuperscriptBox["e", "2"]]], ")"]], " ", SqrtBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]]]]]], RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["c", " ", "z"]], ",", RowBox[List["-", FractionBox["b", "a"]]]]], "]"]]]], "-", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["b", " ", SuperscriptBox["d", "4"]]], "+", RowBox[List["a", " ", SuperscriptBox["e", "4"]]]]], ")"]], " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]], "a"]]]], RowBox[List["c", " ", SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["d", "2"], SuperscriptBox["e", "2"]]]]], " ", SqrtBox[RowBox[List["1", "+", FractionBox[RowBox[List["b", " ", SuperscriptBox["d", "2"]]], RowBox[List["a", " ", SuperscriptBox["e", "2"]]]]]]], " ", SuperscriptBox["e", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox["d", "2"]]], "+", SuperscriptBox["e", "2"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", SuperscriptBox["d", "2"]]], "+", RowBox[List["a", " ", SuperscriptBox["e", "2"]]]]], ")"]], " ", SqrtBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]]]]]], RowBox[List["ArcTanh", "[", FractionBox[RowBox[List[SqrtBox[RowBox[List["2", "+", FractionBox[RowBox[List["2", " ", "b", " ", SuperscriptBox["d", "2"]]], RowBox[List["a", " ", SuperscriptBox["e", "2"]]]]]]], " ", RowBox[List["Cos", "[", RowBox[List["c", " ", "z"]], "]"]]]], RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["d", "2"], SuperscriptBox["e", "2"]]]]], " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]], "a"]]]]], "]"]]]], "-", FractionBox[RowBox[List["d", " ", SuperscriptBox["e", "2"], " ", RowBox[List["Cos", "[", RowBox[List["c", " ", "z"]], "]"]], " ", SqrtBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]]]]], RowBox[List[SqrtBox["2"], " ", "c", " ", RowBox[List["(", RowBox[List[SuperscriptBox["d", "2"], "-", SuperscriptBox["e", "2"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", SuperscriptBox["d", "2"]]], "+", RowBox[List["a", " ", SuperscriptBox["e", "2"]]]]], ")"]], " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["e", " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> ∫ </mo> <mrow> <mfrac> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> <mo> ⁢ </mo> <msup> <mi> e </mi> <mn> 2 </mn> </msup> </mrow> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> d </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> e </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> d </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <msup> <mi> e </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> d </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <msup> <mi> e </mi> <mn> 4 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <mrow> <mi> c </mi> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <msup> <mi> d </mi> <mn> 2 </mn> </msup> <msup> <mi> e </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mfrac> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> d </mi> <mn> 2 </mn> </msup> </mrow> <mrow> <mi> a </mi> <mo> ⁢ </mo> <msup> <mi> e </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> ⁢ </mo> <msup> <mi> e </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> e </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> d </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> d </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <msup> <mi> e </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mrow> </mfrac> <mo> ⁢ </mo> <msqrt> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mi> a </mi> </mfrac> </msqrt> <mo> ⁢ </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <msqrt> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> d </mi> <mn> 2 </mn> </msup> </mrow> <mrow> <mi> a </mi> <mo> ⁢ </mo> <msup> <mi> e </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> + </mo> <mn> 2 </mn> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <msup> <mi> d </mi> <mn> 2 </mn> </msup> <msup> <mi> e </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mi> a </mi> </mfrac> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mrow> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> d </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> e </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> d </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <msup> <mi> e </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mi> a </mi> </mfrac> </msqrt> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mi> E </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ❘ </mo> <mrow> <mo> - </mo> <mfrac> <mi> b </mi> <mi> a </mi> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mi> d </mi> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> d </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> e </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mrow> </mfrac> <mo> ⁢ </mo> <msqrt> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mi> a </mi> </mfrac> </msqrt> <mo> ⁢ </mo> <mrow> <mi> F </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ❘ </mo> <mrow> <mo> - </mo> <mfrac> <mi> b </mi> <mi> a </mi> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> d </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <msup> <mi> e </mi> <mn> 4 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> d </mi> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> e </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> d </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> d </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <msup> <mi> e </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mrow> </mfrac> <mo> ⁢ </mo> <msqrt> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mi> a </mi> </mfrac> </msqrt> <mo> ⁢ </mo> <mrow> <mi> Π </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <msup> <mi> e </mi> <mn> 2 </mn> </msup> <msup> <mi> d </mi> <mn> 2 </mn> </msup> </mfrac> <mo> ; </mo> <mrow> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ❘ </mo> <mrow> <mo> - </mo> <mfrac> <mi> b </mi> <mi> a </mi> </mfrac> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <sin /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> d </ci> <apply> <times /> <ci> e </ci> <apply> <sin /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <sin /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> d </ci> <apply> <cos /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> c </ci> <apply> <plus /> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <ci> d </ci> <apply> <times /> <ci> e </ci> <apply> <sin /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> d </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> e </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <ci> c </ci> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <power /> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <arctanh /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <cos /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <ci> d </ci> <ci> e </ci> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> EllipticE </ci> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <ci> d </ci> <apply> <power /> <apply> <times /> <ci> c </ci> <ci> e </ci> <apply> <plus /> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> EllipticF </ci> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> d </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> e </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <ci> c </ci> <ci> d </ci> <ci> e </ci> <apply> <plus /> <apply> <power /> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> EllipticPi </ci> <apply> <times /> <apply> <power /> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List["Sin", "[", RowBox[List["c_", " ", "z_"]], "]"]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["d_", "+", RowBox[List["e_", " ", RowBox[List["Sin", "[", RowBox[List["c_", " ", "z_"]], "]"]]]]]], ")"]], "2"], " ", SqrtBox[RowBox[List["a_", "+", RowBox[List["b_", " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["c_", " ", "z_"]], "]"]], "2"]]]]]]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["b", " ", SuperscriptBox["d", "4"]]], "+", RowBox[List["a", " ", SuperscriptBox["e", "4"]]]]], ")"]], " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]], "a"]]]], ")"]], " ", RowBox[List["EllipticPi", "[", RowBox[List[FractionBox[SuperscriptBox["e", "2"], SuperscriptBox["d", "2"]], ",", RowBox[List["c", " ", "z"]], ",", RowBox[List["-", FractionBox["b", "a"]]]]], "]"]]]], RowBox[List["c", " ", "d", " ", "e", " ", RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox["d", "2"]]], "+", SuperscriptBox["e", "2"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", SuperscriptBox["d", "2"]]], "+", RowBox[List["a", " ", SuperscriptBox["e", "2"]]]]], ")"]], " ", SqrtBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]]]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["d", " ", "e", " ", SqrtBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]]]]], ")"]], " ", RowBox[List["EllipticE", "[", RowBox[List[RowBox[List["c", " ", "z"]], ",", RowBox[List["-", FractionBox["b", "a"]]]]], "]"]]]], RowBox[List["c", " ", RowBox[List["(", RowBox[List[SuperscriptBox["d", "2"], "-", SuperscriptBox["e", "2"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", SuperscriptBox["d", "2"]]], "+", RowBox[List["a", " ", SuperscriptBox["e", "2"]]]]], ")"]], " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]], "a"]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["d", " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]], "a"]]]], ")"]], " ", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["c", " ", "z"]], ",", RowBox[List["-", FractionBox["b", "a"]]]]], "]"]]]], RowBox[List["c", " ", "e", " ", RowBox[List["(", RowBox[List[SuperscriptBox["d", "2"], "-", SuperscriptBox["e", "2"]]], ")"]], " ", SqrtBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]]]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["b", " ", SuperscriptBox["d", "4"]]], "+", RowBox[List["a", " ", SuperscriptBox["e", "4"]]]]], ")"]], " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]], "a"]]]], ")"]], " ", RowBox[List["ArcTanh", "[", FractionBox[RowBox[List[SqrtBox[RowBox[List["2", "+", FractionBox[RowBox[List["2", " ", "b", " ", SuperscriptBox["d", "2"]]], RowBox[List["a", " ", SuperscriptBox["e", "2"]]]]]]], " ", RowBox[List["Cos", "[", RowBox[List["c", " ", "z"]], "]"]]]], RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["d", "2"], SuperscriptBox["e", "2"]]]]], " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]], "a"]]]]], "]"]]]], RowBox[List["c", " ", SqrtBox[RowBox[List["1", "-", FractionBox[SuperscriptBox["d", "2"], SuperscriptBox["e", "2"]]]]], " ", SqrtBox[RowBox[List["1", "+", FractionBox[RowBox[List["b", " ", SuperscriptBox["d", "2"]]], RowBox[List["a", " ", SuperscriptBox["e", "2"]]]]]]], " ", SuperscriptBox["e", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox["d", "2"]]], "+", SuperscriptBox["e", "2"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", SuperscriptBox["d", "2"]]], "+", RowBox[List["a", " ", SuperscriptBox["e", "2"]]]]], ")"]], " ", SqrtBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]]]]]], "-", FractionBox[RowBox[List["d", " ", SuperscriptBox["e", "2"], " ", RowBox[List["Cos", "[", RowBox[List["c", " ", "z"]], "]"]], " ", SqrtBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]]]]], RowBox[List[SqrtBox["2"], " ", "c", " ", RowBox[List["(", RowBox[List[SuperscriptBox["d", "2"], "-", SuperscriptBox["e", "2"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", SuperscriptBox["d", "2"]]], "+", RowBox[List["a", " ", SuperscriptBox["e", "2"]]]]], ")"]], " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["e", " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|